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Abstract: The production of chestnut (Castanea sativa Miller) is mostly concentrated in Europe.
Chestnut is recognized by its high content of antioxidants and phytosterols. This work aimed to
evaluate the effects of dietary chestnut consumption over physiological variables of FVB/n mice.
Eighteen FVB/n male 7-month-old mice were randomly divided into three experimental groups
(n = 6): 1 (control group) fed a standard diet; 2 fed a diet supplemented with 0.55% (w/w) chestnut;
and 3 supplemented with 1.1% (w/w) chestnut. Body weight, water, and food intake were recorded
weekly. Following 35 days of supplementation, the mice were sacrificed for the collection of biological
samples. Chestnut supplementation at 1.1% reduced abdominal adipose tissue. Lower serum
cholesterol was also observed in animals supplemented with chestnut. There were no significant
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differences concerning the incidence of histological lesions nor in biochemical markers of hepatic
damage and oxidative stress. These results suggest that chestnut supplementation may contribute to
regulate adipose tissue deposition.

Keywords: in vivo; cholesterol; adipose tissue; oxidative stress

1. Introduction

Castanea sativa is a species from the Fagaceae family mainly found in Mediterranean Europe [1].
This species is of great importance as it has several purposes, namely obtaining wood, tannins, and fruits
(chestnuts). Each of these products has a different application [2]. Chestnut (Castanea sativa Miller)
has been used for several centuries as a food source in rural areas of Europe [3]. Chestnuts are mostly
consumed in the autumn [2], and can be eaten in many ways: Fresh, cooked, roasted, or fried [4].
Additionally, chestnuts are used to produce creams, purées, soups, and other products [5]. In the
past, chestnut contributed as an important input of energy and protein in the diet of economically
disadvantaged populations [6]. Chestnut is a low-fat fruit [6,7] that is rich in minerals and vitamins [3],
has high levels of moisture [7] and considerable amounts of fiber, and contains high levels of starch [3,7].
Moreover, chestnut contains phospholipids, tocopherols, and sterols and fatty acids, particularly
linoleic [8]. Chestnuts are low in sodium and high in potassium, phosphorus, and magnesium [9].
In addition to these properties, chestnut has tannins, although these are only present in large quantities
in the red inner shell and the brown shell, which is removed during food preparation [9].

Although the chestnut has never been studied as a whole, beneficial properties for health are
attributed to its compounds. For example, acid linoleic plays an important role in preventing
cardiovascular disease in adults and promotes brain and retinal development in children [3].
The phospholipid content in chestnut is associated with its high antioxidant activity [10]. In vitro
and animal studies suggest that γ-tocopherol has antioxidant and anti-inflammatory properties,
and γ-tocotrienol has anticancer, hypocholesterolemic, and neuroprotective properties [11].

Chestnut oil is rich in polyunsaturated fatty acid (PUFAs), including linoleic and oleic acids,
and tocopherols, such as γ-tocopherol, which have been associated with multiple health benefits,
as previously reviewed by Ramadan [10]. Omega-3 fatty acids have been shown to prevent or ameliorate
conditions with a chronic inflammatory component like Crohn’s disease, ulcerative colitis, and some
autoimmune diseases, and also malignancies that are partly driven by inflammation, like breast [12],
colon, and prostate [13] cancers. Diets rich in PUFAs may also contribute to improve vascular and
metabolic conditions like hypertension and type 2 diabetes, and to decrease the blood concentrations
of cholesterol, in particular that of low-density lipoproteins (LDLs) [14]. Additionally, chestnut oil
contains large amounts of phytosterols, particularly β-sitosterol, followed by stigmasterol [8], both of
which may also contribute to reduce cholesterol levels and prevent diabetes [15,16]. Actually, chestnut
has the highest levels of phytosterols when compared to other nuts (almonds, hazelnuts, walnuts,
and peanuts) [5]. Considering all these findings, chestnuts seem to be a healthy component of the
human diet, especially for celiac, diabetic, and high-cholesterol patients; in addition, chestnuts seem to
reduce the risk of coronary heart diseases [17].

Taking into account these multiple reports on the hypocholesterolemic effects of the chestnut
components, this study aimed to evaluate the physiological and potential toxicological changes
associated with two different chestnut concentrations (0.55% and 1.1%, w/w) included in the diet of
FVB/n mice.
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2. Materials and Methods

2.1. Sample Preparation

A maintenance diet, a commercial rodent feed (consisting, by energy, of 53.5% of carbohydrate,
3% of fat, 18.5% of protein, and 5% of fiber; Mucedola 4RF21 Certificate, Milan, Italy), was used as a
basis for the preparation of modified diets containing raw chestnut without the inner and the outer shell
(AgroAguiar, Agroindústria SA, Sabroso de Aguiar, Portugal). The edible chestnuts were reduced to
flour in a food processor and incorporated into two different modified diets and concentrations of 0.55%.
and 1.1% (w/w). These concentrations were calculated assuming that, during the chestnut season,
an adult (70 kg) person consumes 150 g per serving or 450 g per week. For a 30-g mouse with a 5-g
average daily food intake, this corresponds to 192.6 mg of chestnuts/week/mouse and the 0.55% (w/w)
diet. The high-intake diet (1.1% w/w) was conceived to double the edible chestnut intake. The diets
were prepared using an industrial mixer (CPM Europe, C-300 model, Zaandam, The Netherlands)
and adding 5% (v/w) water to the mix to form new pellets (4.2 mm in diameter). The edible chestnut
inclusion possibly added more carbohydrates and fiber but also fatty acids, phenolic compounds,
and organic acids to the commercial feed. The base diet was prepared in the same method but without
chestnut incorporation. All food lots were subsequently dried in an oven at 40 ◦C for 48 h and stored
at 4 ◦C until further use.

2.2. Experimental Procedures

All experimental procedures were approved by the University of Trás-os-Montes and Alto Douro
Ethics Committee (10/2013) and the Direção Geral de Alimentação e Veterinária (0421/000/000/2014).
The animals were kept under controlled conditions of temperature (23 ± 2◦C), light-dark cycle
(12 h light/12 h dark), and relative humidity (50 ± 10%). Eighteen FVB/n 7-month-old male mice
(Mus musculus) were randomly divided into three different groups (n=6/group): Group 1, control group
fed the standard diet without edible chestnut supplementation; group 2, fed a diet supplemented
with 0.55% chestnut; and group 3, supplemented with 1.1% of chestnut. The well-being of the
animals was checked weekly as well as the body weight of each animal and the water and food
consumption. The animals were sacrificed 35 days after the beginning of the experimental procedures
by intraperitoneal administration of ketamine (Imalgene 1000, Ventóquinol, Barcarena, Portugal) and
xylazine (Rompun® 2% Bayer, Healthcare S.A., Kiel, Germany), followed by cardiac puncture and
exsanguination according to FELASA guidelines. Complete necropsies were performed. Heart, lungs,
spleen, liver, thymus, kidneys, and abdominal and perirenal fat were collected and weighed in a
precision balance (KERN ®PLT 6200-2A, Dias de Sousa S.A., Alcochete, Portugal).

2.2.1. Hematology

Blood samples were centrifuged in capillary tubes at 4500× g for 5 min and microhematocrit values
were obtained. For biochemical analyses, heparinized blood was centrifuged at 1400 × g for 15 min and
plasma was stored at −80◦C until further use. The concentrations of alanine aminotransferase (ALT),
aspartate aminotransferase (AST), creatinine, and cholesterol were determined by spectrophotometric
methods using an autoanalyzer (Prestige 24i, Cormay PZ).

2.2.2. Comet Assay

The alkaline (pH > 13) comet assay was performed in mononuclear blood cells. A system of eight
gels per slide was adopted by Guilherme et al. [18], in order to increase the yield. Briefly, 4 slides
precoated with normal melting point agarose were prepared per mouse. Blood was diluted in 200 µL
of ice-cold phosphate-buffered saline (PBS) and 20 µL of this cell suspension were mixed with 70 µL
of 1% low melting point agarose. Eight drops were placed onto the 4 precoated slide (2 replicates
per slide). The samples were incubated with a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris,
1% Triton X-100, pH 10) at 4 ◦C, for 1 h and rinsed (40 mM HEPES, 0.1 M KCl, 0.5 mM EDTA, 0.2 mg/mL
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bovine serum albumin, pH 8.0). In order to specifically measure oxidative damage to DNA, namely
8-oxoguanines and other altered purines, 2 slides were incubated with formamidopyrimidine DNA
glycosylase (FPG), which converts oxidized purines into DNA single-strand breaks. The enzyme was
generously donated by Professor Andrew Collins (University of Oslo, Oslo, Norway). Then, slides with
and without FPG treatment were incubated in an alkaline electrophoresis solution (0.3 M NaOH and
1 mM EDTA for 30 min at 4 ◦C) and electrophoresed for 30 min, at 25 V and 300 mA. The cells were then
neutralized with PBS followed by distilled water, dehydrated in 70% and absolute ethanol. DNA was
stained with 4,6-diamidino-2-phenylindole (DAPI) and visualized using a fluorescent microscope
(OLYMPUS R XC10, U-RFL-T, Hamburg, Germany). By the visual method, the comets were classified
according to the tail intensity (0 class—without damage and 4 class—high damage) [19]. The total
score expressed as a genetic damage indicator (GDI) was calculated according to the formula:

GDI = [(% nucleoids class 0)×0] + [(% nucleoids class 1)×1] + [(% nucleoids class 2)×2]
+ [(% nucleoids class 3)×3] + [(% nucleoids class 4)×4].

One hundred comets (50 comets per gel) were scored to obtain a genetic damage index (GDI) on a
scale ranging between 0 and 400 arbitrary units. Scores obtained with FPG incubation (GDIFPG) were
subtracted from the untreated GDI to quantify net enzyme-sensitive sites (NSSFPG).

2.2.3. Hepatic and Kidney Histology

Liver and kidney samples were fixated in 10% neutral buffered formalin and embedded in
paraffin. Tissue sections (2-µm-thick) were stained with hematoxylin and eosin for observation
under optical microscopy and histological analysis. In hepatic tissues, the presence of mitotic figures,
intracellular inclusions, binucleated hepatocytes, tri- or multinucleated hepatocytes, focal necrosis
and inflammation, cells with morphological changes suggestive of apoptosis, and hepatocellular
vacuolar degeneration were recorded. Renal lesions were classified as non-suppurative interstitial
nephritis, isolated cell necrosis, cell changes compatible with chronic nephropathy/tubular regeneration,
and tubular accumulation of protein casts suggestive of proteinuria.

2.2.4. Hepatic and Kidney Oxidative Stress

Liver and kidney samples were collected and stored at −80 ◦C until they were processed for
oxidative stress analysis. The samples were homogenized in cold buffer solution (0.32 mM of sucrose,
20 mM of HEPES, 1 mM of MgCl2, and 0.5 mM of phenylmethylsulfonylfluoride (PMSF), prepared
in ethanol to prevent protein degradation, pH 7.4), centrifuged (15,000× g for 20 min at 4◦C) (Sigma
model 3K30, Osterode, Germany), and supernatants were collected. Total superoxide dismutase
(SOD) activity was estimated according to the method described by Durak et al. [20] The activity
of catalase (CAT) was estimated at 240 nm by a method previously described [20] using bovine
catalase as a standard (0–5 U/mL). Gluthathione S-Transferase (GST) activity was estimated due to
the reaction of the thiol group of glutathione with 1-chloro-2,4-dinitrobenzene (CDNB), analyzing
the increase in absorbance at 340 nm. A molar extinction coefficient of 9.60 mM-1 cm-1 was used.
The ration between reduced glutathione (GSH) and oxidized glutathione (GSSG) was determined as
the oxidative-stress index (OSI). The reactive oxygen species (ROS) synthesis was estimated by using a
2,7-dichlorofluorescein diacetate (DCFDA) probe, with excitation at 485 nm and emission at 530 nm as
previously described [21]. An indicator of lipid peroxidation (LPO), malondealdehyde (MDA) was
determined by the thiobarbituric acid (TBA)-based method [22].
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2.2.5. Statistical Analysis

Body weight gain was calculated as previously [23]. Statistical analysis was performed using IBM
SPSS version 25 (Statistical Package for the Social Sciences Chicago, Illinois, EUA). The data obtained
were used to calculate means and standard errors. The data were analyzed using ANOVA test followed
by Bonferroni’s test to test whether differences between groups were statistically significant (p < 0.05).

3. Results

3.1. General Findings

During the experimental work, no phenotypic or behavioral changes were observed among
the experimental mice. Additionally, no mortality was observed during the experimental period.
The mean body weight increased throughout the test in all groups and ponderal weight gains were not
statistically different (p > 0.05, Table 1).

Table 1. Body weight variation (g) throughout the experimental work and weight gain (mean ±
standard error).

Group 1 (No
Chestnut n = 6)

Group 2 (0.55%
Chestnut n = 6)

Group 3 (1.1% Chestnut
n = 6)

0 Week (g) 32.54 ± 0.73 33.63 ± 3.20 32.45 ± 2.54
1 Week (g) 33.70 ± 0.81 34.55 ± 2.83 33.92 ± 3.18
2 Week (g) 34.04 ± 0.86 34.85 ± 2.69 34.48 ± 3.34
3 Week (g) 34.35 ± 0.90 35.09 ± 2.95 34.39 ± 2.70
4 Week (g) 33.96 ± 0.69 35.58 ± 2.75 34.90 ± 3.08
5 Week (g) 34.04 ± 0.78 35.55 ± 3.09 33.94 ± 3.06

Weight Gain (g) 0.044 ± 0.024 0.055 ± 0.014 0.047 ± 0.027

Mice supplemented with edible chestnut consumed significantly (p < 0.05) more food than controls
(group 1), but there were no significant differences concerning water consumption (Table 2). Group 3
(1.1% chestnut) presented significantly lower abdominal adipose tissue weights compared with groups
1 (control) and 2 (0.55% chestnut) (p < 0.005) as shown in Table 3. There were no significant differences
concerning other organ weights.

Table 2. Mean daily food and water consumption per animal at experimental weeks 1 and 5.

Group 1 (No
Chestnut n = 6)

Group 2 (0.55%
Chestnut n = 6)

Group 3 (1.1% Chestnut
n = 6)

Food (g)

1st week 4.30 4.59 4.99 *
5th week 3.98 4.63 * 4.89 *

Water (mL)

1st week 4.70 5.10 6.02
5th week 4.27 6.00 6.03

* Statistically different from group 1 (control) (p < 0.05).
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Table 3. Relative organ weights, peri-renal, and abdominal adipose tissue (mean ± standard error).

Group 1 (No
Chestnut n = 6)

Group 2 (0.55%
Chestnut n = 6)

Group 3 (1.1% Chestnut
n = 6)

Heart (g) 0.0047± 0.00014 0.0048 ± 0.00043 0.0047 ± 0.00087
Lung (g) 0.0053± 0.00049 0.0058 ± 0.00040 0.0060 ± 0.00103

Spleen (g) 0.0035± 0.00102 0.0033 ± 0.00130 0.0033 ± 0.0043
Liver (g) 0.0487± 0.00400 0.0517 ± 0.00317 0.0469 ± 000395

Thymus (g) 0.0011 ± 0.00046 0.0010 ± 0.00050 0.0014 ± 0.00043
Right kidney (g) 0.0076 ± 0.00100 0.0082 ± 0.00102 0.0084 ± 0.00109
Left kidney (g) 0.0076 ± 0.00067 0.0079 ± 0.00151 0.0079 ± 0.00101

Peri-renal fat (g) 0.0050 ± 0.00245 0.0072 ± 0.00288 0.0044 ± 0.0148
Abdominal fat (g) 0.0198 ± 0.00358 * 0.0199 ± 0.00513 * 0.0112 ± 0.00364

* Statistically significant difference from group 3 (p < 0.05).

3.2. Hematology

The microhematocrit values were not statistically different between groups (Table 4). Group 1
(control) mice showed higher total cholesterol values compared with groups 2 (0.55% chestnut) and 3
(1.1% chestnut), but the difference was not significant.

Table 4. Microhematocrit (Ht) and serum biochemical parameters (mean ± standard error).

Group 1 (No
Chestnut n = 6)

Group 2 (0.55%
Chestnut n = 6)

Group 3 (1.1% Chestnut
n = 6)

Ht (%) 41.27 ± 1.621 41.34 ± 0.303 41.93 ± 3.360
Creatinine (mg/dL) 0.342 ± 0.282 0.120 ± 0.088 0.332 ± 0.309
Cholesterol (mg/dL) 157.85 ± 4.10 139.68 ± 6.29 151.88 ± 25.89

AST (U/L) 65.17 ± 21.43 49.42 ± 14.06 66.86 ± 29.82
ALT (U/L) 43.37 ± 6.32 34.56 ± 8.22 34.44 ± 9.01

3.3. Liver and Kidney Histology

Results from the renal and hepatic histology are summarized in Table 5. Again, there were no
significant differences between groups.

Table 5. Histological classification of liver and kidney lesions in mice.

Experimental Groups Group 1 (No
Chestnut n = 6)

Group 2 (0.55%
Chestnut n = 6)

Group 3 (1.1% Chestnut
n = 6)

Liver lesions

Mitotic cells 2/6 (33.3%) 1/6 (16.6%) 2/6 (33.3%)
Intracellular Inclusions 1/6 (16.7%) 4/6 (66.7%) 4/6 (66.7%)
Tri- or multinucleated

hepatocytes 1/6 (16.6%) 1/6 (16.6%) 3/6 (50.0%)

Focal necrosis and inflammation 2/6 (33.3%) 3/6 (50.0%) 2/6 (33.3%)
Apoptosis 0 (0.0%) 1/6 (16.6%) 2/6 (33.3%)

Vacuolar degeneration 0 (0.0%) 0 (0.0%) 1/6 (16.6%)

Kidney lesions

Non-suppurative interstitial
nephritis 3/6 Focal (50.0%) 6/6 multifocal (100.0%) 6/6 multifocal (100.0%)

Protein casts 0 (0.0%) 1/6 (16.7%) 1/6 (16.7%)
Isolated cell necrosis 2/6 (33.3%) 4/6 (66.7%) 4/6 (66.7%)

Chronic
nephropathy/regeneration 1/6 (16.7%) 2/6 (33.3%) 0 (0.0%)
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3.4. Comet Assay

The genetic damage index (GDI) scores obtained from the comet assay without FPG were not
statistically different between groups (Table 6). When the assay was performed following incubation
with FPG to detect potential oxidative DNA damage to peripheral blood leukocytes, the differences in
GDIFPG scores between groups were also not significant.

Table 6. Genetic damage index (GDI) with and without formamidopyrimidine DNA glycosylase (FPG)
determined by comet assay (mean ± standard error).

Experimental Groups Group 1 (No Chestnut,
n = 6)

Group 2 (0.55%
Chestnut, n = 6)

Group 3 (1.1% Chestnut,
n = 6)

GDI 43.42 ± 7.44 50.83 ± 25.64 44.00 ± 15.84

GDIFPG 44.30 ± 10.42 31.33 ± 7.53 33.50 ± 10.46

3.5. Liver and Kidney Oxidative Stress

Concerning hepatic and renal oxidative stress analyses, no significant differences were observed
between groups for any markers (p > 0.05) (Table 7).

Table 7. Oxidative stress parameters evaluated in the liver and kidney of mice (mean ± standard
deviation).

Oxidative Stress Parameters Group 1 (No
Chestnut n = 6)

Group 2 (0.55%
Chestnut n = 6)

Group 3 (1.1% Chestnut
n = 6)

Liver

ROS (µmol DCF mg −1 protein) 396 ± 166.9 371.6 ± 52.79 339.9 ± 142.6
SOD (U mg −1 of protein) 418.4 ± 171.7 376.2 ± 193.5 904.7 ± 534.3
CAT (U mg −1 of protein) 84.14 ± 31.55 61.52 ± 19.91 46.2 ± 37.33

GST (nmol CDNB/min.mg-1 of protein) 147 ± 70.51 137.7 ± 22.1 196.7 ± 38.33
OSI 1.01 ± 0.84 1.09 ± 0.47 0.77 ± 0.36

LPO (µmol MDA mg −1 of protein) 29.8 ± 9.69 33.86 ± 4.53 31.7 ± 11.19

Kidney

ROS (µmol DCF mg −1 protein) 396.2 ± 223.2 409.1 ± 210.2 363.7 ± 133.2
SOD (U mg −1 of protein) 406.4 ± 222.7 312.3 ± 122.5 532.8 ± 330.5
CAT (U mg −1 of protein) 57.11 ± 22.26 43.03 ± 3.95 44.52 ± 18.56

GST (nmol CDNB/min.mg −1 of
protein)

20.13 ± 5.34 12.08 ± 16.13 17.39 ± 9.67

OSI 1.50 ± 1.51 2.64 ± 1.88 1.52 ± 0.72
LPO (nmol MDA mg −1 of protein) 33.62 ± 10.5 41.48 ± 17.41 48.83 ± 12.96

4. Discussion

This is the first experimental study to evaluate the effects of dietary supplementation with different
edible chestnut concentrations in mice (Mus musculus). Noh and colleagues previously evaluated
the effects of the chestnut inner shell (Castanea crenata) on HepG2 (human liver cancer cell line) cells
and in C57BL/6 mice treated with a high-fat diet. Inner shell extracts showed the ability to reduce
oxidative damage caused by tert-butylhydroperoxide in HepG2 cells in vitro, as well as oxidative
damage caused by carbon tetrachloride [24]. Jovanović and co-workers found that spiny burrs extract
of sweet chestnut (Castanea sativa Mill) improved the liver and kidney function in diabetic Wistar
rats, by reducing oxidative damage towards lipids and DNA and inhibiting protein glycation [25].
However, none of these previous studies addressed the effects of chestnut kernels in the diet in such a
way as to reproduce the values of chestnuts consumed by humans.
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This experiment is a preliminary study, so we used a small sample of animals (calculated
using the power of analysis) in order to achieve results and, at the same time, apply the 3Rs
(Replacement, Reduction and Refinement) principle predicted for animal experiments. During the
present experimental work, no mortality was recorded in any group and no physiological or behavioral
changes were observed, supporting the idea that edible chestnut supplementation is well tolerated.
In line with these findings, all groups showed positive ponderal weight gains. Experimental groups
supplemented with edible chestnuts showed significantly higher feed intake, suggesting that the
chestnut was highly palatable. Importantly, this increased food intake did not result in significant
weight differences or obesity. Other studies from our group in which the diet of FVB/n mice was
similarly manipulated with the addition of the polyphenols curcumin and rutin showed similar
results [26]. There were no significant differences in the relative weight of internal organs between
groups, again suggesting that edible chestnut supplementation was safe in this experimental setting.
A study from Nyengaard and colleagues concluded that kidney weight is positively correlated with
the number of glomeruli present and the size of the glomeruli [27]. Jovanović found that diabetic
Wistar rats presented a distorted renal architecture with glomerulopathy and tubular degenerescence
and that treatment with sweet chestnut extract partially preserved the renal architecture [25]. In line
with these observations, in the present study, we did not observe significant histological or oxidative
stress changes associated with edible chestnut supplementation, even at the higher dosage of 1.1%.
Creatinine values were lower in the groups supplemented with edible chestnut, although the difference
was not significant. Lower blood plasma creatinine levels in animals from groups 2 (0.55% chestnut)
and 3 (1.1% chestnut) may be associated with a more efficient glomerular filtration rate.

The values obtained in the microhematocrit did not present statistically significant differences
between the groups, in line with previous findings from another group [28]. There were also
no significant changes concerning hepatic transaminases, ALT, and AST, suggesting that dietary
supplementation with chestnut did not induce hepatotoxicity at the biochemical level. This is in line
with the results of Jovanović et al. [25], who administered spiny burrs extracts of sweet chestnut to
Wistar rats and did not observe hepatic toxicity. The results from histological and oxidative stress
analyses performed in hepatic tissues agree with the blood biochemistry, indicating that the edible
chestnut supplementation was safe in these experimental conditions.

The most interesting finding from the present study is the lower relative weights of peri-renal
and abdominal adipose tissue in mice supplemented with 1.1% chestnut. This may be explained by
the amount of digestion-resistant starch in chestnut (C. sativa), which accounts for over 50% of the
total starch content in this kind of nut [29], and also by its high PUFAs content. Si and co-workers
concluded that resistant starch significantly reduces the weight of adipose tissue in Wistar rats with
a high-fat diet [30]. Chestnut supplementation also increased the concentration of polyunsaturated
and monounsaturated fatty acids in the adipose tissue of pigs [31]. Monounsaturated fatty acids and
omega-3 PUFAs present in adipose tissue are indirectly associated with obesity [32]. These findings are
significant, as reduced body fat contributes to improving metabolic and vascular health, preventing
conditions like diabetes and atherosclerosis [33], and also inflammation-associated conditions and
certain types of cancer [12,13]. Groups supplemented with edible chestnut also showed a trend towards
lower total blood cholesterol values, reinforcing the potential of chestnut to protect metabolic and
vascular homeostasis. These results may be explained by the presence of PUFAs, namely linoleic acid,
which plays a key role in cholesterol reduction [33]. Alongside linoleic acid, the γ-tocotrienol and
sterols present in chestnuts also have an impact on cholesterol reduction [10,11]. A previous study in
Zucker fa/fa rats (obesity rat model)concluded that omega-3 PUFAs led to a reduction in cholesterol
levels [34]. Another study also found that chestnut spiny burrs extracts decreased cholesterol levels in
diabetic Wistar rats [25].

The comet assay did not reveal significant increases in DNA damage in animals supplemented
with edible chestnut, even when samples were pre-treated with FPG to reveal oxidative DNA-damage.
In fact, there was a trend towards reduced oxidative DNA damage in animals that received edible
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chestnut. Based on these results, dietary supplementation with edible chestnut does not seem to
cause damage to DNA and it may even reduce oxidative DNA damage, in line with the findings of
Jovanović et al. [25], who showed that spiny burrs extracts of sweet chestnut reduce DNA damage in
the liver and kidney cells of diabetic rats. This protective effect may be associated with the antioxidant
properties of phenolic compounds in chestnuts [35]. Extracts of the chestnut inner shell (C. crenata)
reduced oxidative stress in C57BL/6 mice exposed to a high-fat diet [24]. Similar results were reported
by Grdović et al. [35], who observed that spiny burrs extract of sweet chestnut (C. sativa Mill) reduced
DNA damage induced by streptozotocin in pancreatic β-cells, and associated this reduction with the
high content of ellagic acid and its derivatives in chestnut. In fact, ellagic acid was already known
to reduce DNA damage in Chinese hamster ovary cells through comet assay and cytofluorimetric
analyses [36].

We intend to carry out additional studies with higher doses of chestnut, different exposure times,
and other types of chestnut preparations. In addition, our team intends to carry out an obesity model
to assess the effects of chestnut on the animals’ body weight, cholesterol levels, and the percentage of
white and brown fat.

5. Conclusions

These experimental works suggest that an edible chestnut diet can be beneficial by reducing
visceral fat and total blood cholesterol. Moreover, no toxic effects were observed in association with
dietary edible chestnut supplementation, even when using doses estimated to be twice higher than
those generally consumed by human populations.
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Evaluation of the Antioxidant and Antiglycation Effects of Lactarius deterrimus and Castanea sativa Extracts
on Hepatorenal Injury in Streptozotocin-Induced Diabetic Rats. Front. Pharm. 2017, 8, 793. [CrossRef]
[PubMed]

26. Moutinho, M.; Aragão, S.; Carmo, D.; Casaca, F.; Silva, S.; Ribeiro, J.; Sousa, H.; Pires, I.; Queiroga, F.;
Colaço, B.; et al. Curcumin and Rutin Down-regulate Cyclooxygenase-2 and Reduce Tumor-associated
Inflammation in HPV16-Transgenic Mice. Anticancer Res. 2018, 38. [PubMed]

27. Nyengaard, J.R.; Bendtsen, T.F. Glomerular number and size in relation to age, kidney weight, and body
surface in normal man. Anat. Rec. 1992, 232, 194–201. [CrossRef]

28. Joo, Y.H.; Choi, I.H.; Kim, D.H.; Lee, H.J.; Amanullah, S.M.; Yang, H.S.; Kim, S.C. Effects of chestnut (Castanea
sativa) meal supplementation on growth performance, carcass characteristics, and meat quality of pigs. R.
Bras. Zootec. 2018, 47. [CrossRef]

29. Pizzoferrato, L.; Rotilio, G.; Paci, M. Modification of Structure and Digestibility of Chestnut Starch upon
Cooking: A Solid State 13 C CP MAS NMR and Enzymatic Degradation Study. J. Agric. Food Chem. 1999, 47,
4060–4063. [CrossRef] [PubMed]

30. Si, X.; Strappe, P.; Blanchard, C.; Zhou, Z. Enhanced anti-obesity effects of complex of resistant starch and
chitosan in high fat diet fed rats. Carbohydr. Polym. 2017, 157, 834–841. [CrossRef]

31. Pugliese, C.; Sirtori, F.; Acciaioli, A.; Bozzi, R.; Campodoni, G.; Franci, O. Quality of fresh and seasoned fat of
Cinta Senese pigs as affected by fattening with chestnut. Meat Sci. 2013, 93, 92–97. [CrossRef]

32. DiNicolantonio, J.J.; O’Keefe, J.H. Good Fats versus Bad Fats: A Comparison of Fatty Acids in the Promotion
of Insulin Resistance, Inflammation, and Obesity. Mo. Med. 2017, 114, 303–307.

33. Jandacek, R.J. Linoleic Acid: A Nutritional Quandary. Healthcare 2017, 5, 25. [CrossRef]
34. Vikøren, L.; Drotningsvik, A.; Bergseth, M.; Mjøs, S.; Austgulen, M.; Mellgren, G.; Gudbrandsen, O. Intake of

Baked Cod Fillet Resulted in Lower Serum Cholesterol and Higher Long Chain n-3 PUFA Concentrations in
Serum and Tissues in Hypercholesterolemic Obese Zucker fa/fa Rats. Nutrients 2018, 10, 840. [CrossRef]
[PubMed]
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Zeković, Z.; Mujić, A.; et al. The protective effect of a mix of Lactarius deterrimus and Castanea sativa extracts
on streptozotocin-induced oxidative stress and pancreatic β-cell death. Br. J. Nutr. 2012, 108, 1163–1176.
[CrossRef] [PubMed]

36. Festa, F.; Aglitti, T.; Duranti, G.; Ricordy, R.; Perticone, P.; Cozzi, R. Strong antioxidant activity of ellagic acid
in mammalian cells in vitro revealed by the comet assay. Anticancer Res. 2001, 21, 3903–3908. [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/laban.254
http://dx.doi.org/10.1016/j.fct.2010.08.018
http://www.ncbi.nlm.nih.gov/pubmed/20732376
http://dx.doi.org/10.3389/fphar.2017.00793
http://www.ncbi.nlm.nih.gov/pubmed/29163175
http://www.ncbi.nlm.nih.gov/pubmed/29491072
http://dx.doi.org/10.1002/ar.1092320205
http://dx.doi.org/10.1590/rbz4720170168
http://dx.doi.org/10.1021/jf9813182
http://www.ncbi.nlm.nih.gov/pubmed/10552765
http://dx.doi.org/10.1016/j.carbpol.2016.10.042
http://dx.doi.org/10.1016/j.meatsci.2012.08.006
http://dx.doi.org/10.3390/healthcare5020025
http://dx.doi.org/10.3390/nu10070840
http://www.ncbi.nlm.nih.gov/pubmed/29958397
http://dx.doi.org/10.1017/S0007114511006702
http://www.ncbi.nlm.nih.gov/pubmed/22186906
http://www.ncbi.nlm.nih.gov/pubmed/11911267
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Experimental Procedures 
	Hematology 
	Comet Assay 
	Hepatic and Kidney Histology 
	Hepatic and Kidney Oxidative Stress 
	Statistical Analysis 


	Results 
	General Findings 
	Hematology 
	Liver and Kidney Histology 
	Comet Assay 
	Liver and Kidney Oxidative Stress 

	Discussion 
	Conclusions 
	References

