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Alpha-linolenic acid (ALA) is plant-based essential omega-3 polyunsaturated fatty acids that must be obtained through the diet.
This could explain in part why the severe deficiency in omega-3 intake pointed by numerous epidemiologic studies may increase
the brain’s vulnerability representing an important risk factor in the development and/or deterioration of certain cardio- and
neuropathologies. The roles of ALA in neurological disorders remain unclear, especially in stroke that is a leading cause of death.
We and others have identified ALA as a potential nutraceutical to protect the brain from stroke, characterized by its pleiotropic
effects in neuroprotection, vasodilation of brain arteries, and neuroplasticity.This review highlights how chronic administration of
ALA protects against rodentmodels of hypoxic-ischemic injury and exerts an anti-depressant-like activity, effects that likely involve
multiple mechanisms in brain, and may be applied in stroke prevention. One major effect may be through an increase in mature
brain-derived neurotrophic factor (BDNF), a widely expressed protein in brain that plays critical roles in neuronal maintenance,
and learning and memory. Understanding the precise roles of ALA in neurological disorders will provide the underpinnings for
the development of new therapies for patients and families who could be devastated by these disorders.

1. Introduction

Dietary approaches for stroke prevention and rehabilitation
hold promise to improve outcomes in individuals at risk of
stroke and those who have had a stroke [1–4]. Although
there is abundant literature that connects reduction in stroke
risk to certain dietary elements and increase in stroke risk
to other certain dietary components, there is a paucity of
clinical trial data to direct the public and clinicians in this

important area of clinical need. Compounds with pleiotropic
effects aimed at reducing infarct size by one or more mech-
anisms and improving outcome would be advantageous in
reducing the devastating effects of stroke on patients and their
families [1–3]. One compound that has been demonstrated to
exert neuroprotective, anti-inflammatory, and antidepressant
properties is 𝛼-linolenic acid (ALA), an 18-carbon, essential
omega-3 polyunsaturated fatty acid (PUFA) (Figure 1). In this
review we discuss beneficial effects of 𝛼-linolenic acid and
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Figure 1: Structure of 𝛼-linolenic acid. 𝛼-Linolenic acid is an 18-
carbon, polyunsaturated fatty acid that is essential for normal health.
Because humans do not possess the enzymes to synthesize the
compound, it must be obtained from dietary sources.

clinically relevant data to suggest that further exploration of
this dietary component might be useful in stroke prevention
and recovery.

Omega-3 fatty acids are required for normal health, espe-
cially for the brain development and function [16]. Prior work
has shown that a seafood-rich diet was associated with low
rates of coronary heart disease and autoimmune disorders in
Greenland Eskimos which has been generally ascribed to the
intake of eicosapentaenoic acid (EPA) and docosahexaenoic
acid [DHA] [4]. A change in diet over the last century toward
a higher total fat and saturated fat content and a sedentary
lifestyle has been associated with an increase in the incidence
of chronic disorders such as hypertension, diabetes, and
atherosclerosis [17–20], all of which are stroke risk factors or
risk markers. In addition, omega-6 fatty acids are consumed
at a higher level compared with omega-3 fatty acids in a
standard western diet and they have been implicated in
coronary atherogenesis [21]. The distinction between the two
types of PUFAs is underscored by the fact that a higher
ratio of omega-6 fatty acids (linoleic acid) to omega-3 fatty
acids (alpha-linolenic acid) increases platelet aggregation
[22], is prothrombotic, and increases vasoconstriction [1–
4, 20, 23]. These effects are presumably due, at least in
part, to being integral components of the cell membrane
[1, 24]. A large body of evidence from experimental, clinical,
and epidemiologic research reports a cardioprotective role
of long-chain omega-3 fatty acids EPA and DHA derived
primarily from fatty fish. While prospective observational
cohort investigations indicated that consumption of fatty fish
twice or more a week significantly lowers risk of cardio-
vascular death [25], the findings from randomized clinical
trials examining the effects of fish oil supplementation on
cardiovascular disease morbidity and mortality in secondary
prevention settings were inconsistent. Fourteen randomized
clinical trials were evaluated by both Messori et al. [26]
and Kwak et al. [27]. These two groups adopted different
statistical methods, but neither found a benefit associated
with omega-3 fatty acid supplements versus placebo [26, 27].
Importantly, however, the 14 randomized clinical trials so far
reported have been small and short-term studies that were
not specifically designed to evaluate CVD end points and, of
note, the 2 large open-label trials that report a benefit with
omega-3 supplementation [28, 29] were excluded from their
analysis. While awaiting more definitive results that include
a standardized dose and a formulation maximizing bioavail-
ability, the American Heart Association has released dietary
guidelines that recommend intake of fatty fish twice a week,
underscoring the view that a cardioprotective diet needs to
be rich in omega-3 fatty acids [30–32]. There is extensive

literature on the effects of EPA and DHA in cardiovascular
disease compared to 𝛼-linolenic acid, the precursor of EPA
and DHA (see [1, 24] and the references therein).

2. Cardiovascular Disease (CVD) and
𝛼-Linolenic Acid

In the absence of definitive evidence, several sources imply,
rather than directly state, that the high ratio of omega-
6/omega-3 that constitutes the typical western diet may
promote the pathogenesis of many diseases, including car-
diovascular disease, cancer, inflammatory and autoimmune
diseases. It is therefore a widely held belief that restoring
the balance omega-6/omega-3 to a ratio of 5 : 1 is important,
but this “ratio theory” remains controversial. Indeed, a high
omega-6 intake may not be characteristic of many western
countries and a focus on the omega-6/omega-3 ratio risk
diverts attention away from simply increasing the absolute
intake of omega-3 fatty acids, which alone has been shown
to have beneficial effects, especially on cardiovascular health
[33]. Interestingly, only the daily intake of EPA and DHAwas
promoted while the absolute and relative change of omega-
6/omega-3 in the food between the late paleolithic period
and the current US western diet seems mainly mediated by
the pronounced change in the linolenic acid (LA): 𝛼-linolenic
acid (ALA) ratio of the diet [34]. This points out that the
importance of ALA as a particularly bioactive component
from vegetables food source has been underestimated, espe-
cially because humans, like all mammals, cannot synthesize
𝛼-linolenic acid (e.g., we do not possess the enzymes for de
novo synthesis. ALAmust therefore be obtained from the diet
and excellent sources of ALA include rapeseed and walnuts
[35, 36]. In fact, interest in omega-3 in CVD has mainly
focused on EPA and DHA rather than ALA because ALA
bioconversion to EPA and DHA is minimal and therefore
a diet rich in ALA might not fulfill DHA requirements
(for review, [37, 38]). Since a wide variety of protective
mechanisms were ascribed directly to DHA (for review,
[39, 40]), diet supplementation with high levels of ALA has
been seen of little interest as compared to supplementation
with preformed EPA or DHA. This might have been an
unfortunate outcome in view of the growing evidence that
dietary ALA may also protect against CVD.

First, ALA-enriched diets have been shown in some
animal studies to influence the concentration of lipoprotein
in plasma. This ability to decrease low density lipoprotein
(LDL) may be of importance as increased levels of LDL in
plasma are strikingly correlated with the risk of developing
atherosclerosis and CHD. Unfortunately, this plasmatic LDL
reduction has not been found in studies in humans, although
consumption of ALA-enriched sources affected LDL content
in ALA, EPA, and DHA that were increased [41–43]. Second,
consumption of ALA-enriched sources and of fish oils rich
in EPA/DHA has similar antiarrhythmic properties [44, 45],
which are known to reduce the human risk of myocardial
infarction and fatal ischemic heart disease. Nevertheless, the
conclusion of prospective cohort studies that dietary ALA is
beneficial against CVD [46–48] has been recently challenged
by a meta-analysis concluding that increasing ALA intake
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may only produce modest cardioprotection [49]. In addition
to the modification of ionic channels currents induced
by the incorporation of these polyunsaturated fatty acids
into the cardiomyocytes membrane phospholipid bilayer,
which could account for the antiarrhythmic effects, omega-
3 PUFAs are paradoxical antioxidant and anti-inflammatory
compounds and therefore could indirectly decrease oxidation
and inflammation associated with CVD [50–52]. A diet rich
in ALA reduces proinflammatory cytokines which in turn
is related to the omega-6/omega-3 ratio (i.e., a lower ratio
reduces the proinflammatory mediators [7]; inflammation
is considered to play an important role in atherosclerosis,
a major risk factor for cardiovascular disease and stroke
[53]). In a recent study, de Goede and colleagues [54]
have examined the 10-year incidence of CHD and stroke in
relation to ALA intake in a Dutch population-based cohort
of over 20,000 adults. While no association between ALA
intake and incident coronary heart disease was observed,
their study revealed that ALA intake lowered the risk of
stroke. Compared to an Eskimopopulationwhere the omega-
6/omega-3 ratio is 1, the ratio of a typical western diet is
10/1–25/1 [34]. Thus, increasing the intake of ALA may be
beneficial in reducing stroke risk.

3. Stroke and 𝛼-Linolenic Acid

A typical western diet is severely deficient in omega-3 fatty
acids and this may elevate the risk for stroke [1, 3, 24, 54].
During an ischemic stroke, glutamate excitotoxicity through
overactivation of N-methyl-D-aspartate (NMDA) receptors
is the major mechanism of neuronal cell death within the
core and surrounding ischemic area called the penumbra.
Neuronal necrosis driven by glutamate excitotoxicity occurs
within minutes to hours following cerebral ischemia. This
creates an extremely reduced timewindowof intervention for
administration of therapeutics aimed at inhibiting glutamate-
mediated cell death pathways [55]. This time constraint of
acute neuroprotection will probably be difficult to achieve
in clinical practice drawing attention to the importance of
prevention. The common view of prevention of the risk
factors is to reduce the occurrence of stroke. Nevertheless
an emerging concept in the field is that nutritional factors
may exert a protective role against stroke-induced damage,
a field of study of potentially major relevance but still poorly
addressed (see [1, 3]).

There is a great deal of evidence that ALA is a potent
neuroprotective agent against focal and global ischemia in
animal models [11, 56–62]. This same mechanism appears to
underlie clinical findings, where, in adultmen, serum levels of
ALA were independently associated with a 37% reduction in
stroke risk [63]. Also, the higher the intake of𝛼-linolenic acid,
the lower the prevalence of a carotid plaque [64], and similar
results were reported in mice [35]. ALA activates a neuronal
background rectifying potassium channel [65] leading to
membrane hyperpolarization which in turn increases the
magnesium block of the calcium channel associated with
NMDAreceptorswhich play a predominant role inmediating
glutamate-mediated excitotoxic neuronal cell death [58, 61].
In this rodent model of global ischemia where hippocampal

pyramidal neuronal death ismainly driven by glutamate exci-
totoxicity, we found that ALA exerted a profound protective
effect that was more pronounced and reproducible than with
EPA and DHA [61]. Additional studies in rodents revealed
an essential role for the transcription factor, nuclear factor
kappaB, in the ability of ALA to protect neurons against
ischemia [11] and to induce tolerance [57], a phenomenon
where neurons become resistant to a stressful environment
such as ischemia [66]. ALA was shown to increase levels
of brain-derived neurotrophic factor (BDNF), a widely dis-
tributed protein that [59] in the brain carries out diverse
functions, including neuronal maintenance, learning and
memory, neuronal survival, and neurogenesis [67–72]. Other
proteins, such as HSP70, a heat shock protein [57, 60], which
acts as a protein chaperone, also have roles in regulating
programmed cell death (i.e., apoptosis) [73]. While some
features are known, the precise mechanisms by which 𝛼-
linolenic acid exerts its pleiotropic properties in brain are still
not clear. Omega-3 fatty acids act via multiple mechanisms
such as through the alteration of plasma membrane fluidity,
lipid rafts, and signal transduction mechanisms in addition
to effects on gene expression [74]. DelineatingALA-mediated
mechanisms may increase the number of cellular and molec-
ular targets that lead to enhanced therapeutic efficacy.

4. Stroke and Brain-Derived Neurotrophic
Factor (BDNF)

Of the known gene targets of ALA, BDNF shows promise as
a therapy for stroke. In many studies, BDNF has been shown
to reduce infarct size and improve outcome (see [75–77] and
the references therein) whereas blocking endogenous BDNF
worsens ischemia [78]. Administration of BDNF via the
intravenous route as well as the intracerebroventricular route
reduced infarct size and improved outcome in the transient
middle cerebral artery occlusion model of stroke [79, 80].
However, in humans, anticipated pharmacokinetic challenges
make it difficult to develop BDNF itself as a therapy to the
clinic [81]. This problem, however, creates opportunities to
discover compounds that increase endogenous expression
of BDNF in brain. To this end, chronic ALA treatment
increases BDNF mRNA and protein levels in the cortex
and hippocampus (Figure 2), two brain regions that are
susceptible to ischemia but are also involved in plasticity
responses. ALA increases neurogenesis, synaptogenesis, and
synaptic function in the rodent brain [82]. The ability to
increase neurogenesis in the brain is critical because it has
been shown that neural stem cells improve neurological
function in stroke [83–87]. Neural stem cells can modulate
the ischemic environment via the upregulation of survival-
promoting/neurotrophic factors such as BDNF and/or by
restoring neurotransmitter function by integrating in existing
networks and improving network circuitry. Taken together,
these findings indicate that ALA induces tolerance and
reduces infarct size in animal models of stroke. ALA was also
demonstrated to exert antidepressant activity and increase
BDNF mRNA and protein levels in the brain which in turn
likely stimulates neurogenesis, synaptogenesis, and synaptic
function. The benefit between the intake of ALA and the
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Figure 2: Interplay between NMDA and TrkB receptors mediated by ALA-induced lipid rafts in neuronal plasmamembranes. An increase in
the nutraceutical ALA is hypothesized to markedly increase membrane fluidity leading to the efficient formation of lipid rafts [5] in neuronal
plasmamembranes. Lipid rafts are the functional domains of the plasmamembrane and play a crucial role in the regulation of transmembrane
signaling [6]. TrkB receptors and some NMDA receptors are constituents of lipid rafts [7–10] and one of the major nonprotein components
of lipid rafts is cholesterol [6]. The enhanced formation and/or efficiency of transmembrane signaling is hypothesized to result in enhanced
activation (phosphorylation) of NMDA and TrkB receptors via the binding of BDNF to its cognate receptor, TrkB. Activation of NMDA
receptors results in enhanced calcium influx and activation of signal transduction pathways leading to activation of nuclear factor kappa B
(NF-𝜅B) via the canonical pathway (phosphorylation of I-𝜅B leads to its dissociation from the dimer (p65/p50) which then translocates to
the nucleus where it binds to 𝜅B sites to regulate gene expression) which in turn increases BDNFmRNA and protein levels [11–14]. Enhanced
intracellular BDNF protein expression would lead to an increase in secretion, thereby maintaining its availability to bind to TrkB in an
autocrine fashion [14, 15] as well as to stimulate neurogenesis, synaptogenesis, and synaptic function at distant sites (paracrine function).

reduction in stroke risk in humans, the substantial evidence
that ALA reduces infarct size, improves outcome and survival
in animal models and the fact that ALA exhibits a wide safety
margin provides a strong rationale for the systematic study of
ALA administration in stroke.

5. Stroke, Depression, ALA, and BDNF

Poststroke depression is a common occurrence and can
adversely affect outcome after stroke [88]. Stroke and depres-
sion are complex andmultifaceted diseases but both disorders
have common pathological substrates that could be targeted
by therapeutic intervention. For example, there is growing
evidence that neuroplasticity plays a crucial role in both
pathologies. Consequently, compounds that increase neuro-
plasticity in the brain could ameliorate or prevent an infarct
and reduce downstream consequences such as poststroke
depression.

A longitudinal study of 50,000 women found that
increased intake of ALA reduced depressive symptom [89].
Earlier studies showed similar results [90–92]. In normal
mice, ALA treatment (given intravenously or in the diet)
exerted an antidepressant effect. This effect was associated
with increased synaptogenesis and an increase in BDNF
mRNA levels in brain (Figure 3; [82, 93]). Evidence has
shown that antidepressant drugs enhance the activation of
TrkB receptors, the high affinity receptor that binds BDNF
[94] and is a key event in exerting antidepressant properties
[82, 94, 95]; BDNF has been implicated in mediating the
antidepressant effects in brain [96].

6. Conclusion

In common with several others groups, we have demon-
strated the broad neuroprotective and neuroplastic potential
of omega-3 injection in animal models of neurodegenerative
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Figure 3: In vivo subchronic ALA treatment increases mature
BDNF levels in neurons of the cortex and hippocampus, but not in
striatum. BDNF increase in these specific brain regions is consistent
with well-known properties for the efficiency of antidepressant
drugs and with the level of brain protection offered by the sub-
chronic ALA treatment. Mature BDNF expression was measured
10 days after the subchronic treatment by Western blots in cortex,
hippocampus (∗𝑃 > 0.05), and striatum (𝑃 < 0.05) of mice injected
with ALA or vehicle. Subchronic treatment consisted of three i.v.
injections of 500 nmol/kg of 𝛼-linolenic acid on days 1, 3, and 7.

conditions, including acute neurological injuries such as
stroke and spinal cord injury (for review, see [1, 3, 97]. In
addition, intravenous perfusion of omega-3 fatty acid—in
the form of 10% fish oil emulsion supplementing parenteral
nutrition—has been shown to improve organ failure-related
outcomes [98]. Although the impact of omega-3 fatty acid
intravenous supplementation in human neurological con-
ditions has not been addressed, it is tempting to speculate
that this approach may offer significant benefit in human
ischemic conditions. With regard to omega-3 consumption,
a maximum dose of 3 g/day of long chain omega-3 fulfills
the Generally Recognized as Safe status in the United States
and the French recommendation not to exceed more than
15 times the Daily Recommended Intake [99]. Therefore,
we believe that, in light of the currently available data,
the conventional recommendations of omega-3 at a dose
of 1 g/day of ALA, or 0.750–1 g/day of EPA + DHA, may
offer therapeutic benefit in patients at risk of cardiovascular
diseases. It is also noteworthy that these doses are without
adverse effects. General consensus on the importance of

eating for health may turn as a particular commitment for
prevention, recovery, and rehabilitation from stroke. Healthy
eating after stroke may be important for recovery though
additional formal testing is needed, as it could be to improve
outcome and reduce reoccurrence. Choosing healthy foods
may be a challenge, underlying the importance of identifying
natural products with health benefit, like ALA that is a non-
proprietary, naturally occurring omega-3 fatty acid contained
in foodstuffs. ALA has anti-inflammatory and other potential
beneficial properties and, based on the weight of available
data, may reduce stroke risk, size, and/or consequences.
Sources of 𝛼-linolenic acid include but are not limited to
flaxseed, rapeseed, and walnuts. ALA is well tolerated and
can be supplemented into the diet in a variety of food
sources including muffins. The potential benefits of ALA are
supported by both animal studies and human observational
epidemiologic studies. Early phase clinical trials evaluating𝛼-
linolenic acid are justified, and if these indicate benefit, larger
scale studies of this agent in stroke prevention should follow.
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[56] N. Blondeau, O. Pétrault, S. Manta et al., “Polyunsaturated
fatty acids are cerebral vasodilators via the TREK-1 potassium
channel,” Circulation Research, vol. 101, no. 2, pp. 176–184, 2007.

[57] N. Blondeau, C. Widmann, M. Lazdunski, and C. Heurteaux,
“Polyunsaturated fatty acids induce ischemic and epileptic
tolerance,” Neuroscience, vol. 109, no. 2, pp. 231–241, 2002.

[58] C. Heurteaux, N. Guy, C. Laigle et al., “TREK-1, a K+ channel
involved in neuroprotection and general anesthesia,”TheEMBO
Journal, vol. 23, no. 13, pp. 2684–2695, 2004.

[59] C. Heurteaux, C. Laigle, N. Blondeau, G. Jarretou, and M.
Lazdunski, “Alpha-linolenic acid and riluzole treatment confer
cerebral protection and improve survival after focal brain
ischemia,” Neuroscience, vol. 137, no. 1, pp. 241–251, 2006.

[60] L. Lang-Lazdunski,N. Blondeau,G. Jarretou,M. Lazdunski, and
C. Heurteaux, “Linolenic acid prevents neuronal cell death and
paraplegia after transient spinal cord ischemia in rats,” Journal
of Vascular Surgery, vol. 38, no. 3, pp. 564–575, 2003.

[61] I. Lauritzen, N. Blondeau, C. Heurteaux, C. Widmann, G.
Romey, and M. Lazdunski, “Polyunsaturated fatty acids are
potent neuroprotectors,” The EMBO Journal, vol. 19, no. 8, pp.
1784–1793, 2000.

[62] Y. F. Xiao, S. N. Wright, G. K. Wang, J. P. Morgan, and A. Leaf,
“Fatty acids suppress voltage-gated Na+ currents in HEK293t
cells transfected with the 𝛼-subunit of the human cardiac Na+
channel,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 95, no. 5, pp. 2680–2685, 1998.

[63] J. A. Simon, J. Fong, J. T. Bernert Jr., andW. S. Browner, “Serum
fatty acids and the risk of stroke,” Stroke, vol. 26, no. 5, pp. 778–
782, 1995.
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