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Rosemary (Rosmarinus officinalis L.) is one of the most economically important species of the family Lamiaceae. Native to the
Mediterranean region, the plant is now widely distributed all over the world mainly due to its culinary, medicinal, and commercial
uses including in the fragrance and food industries. Among the most important group of compounds isolated from the plant are
the abietane-type phenolic diterpenes that account for most of the antioxidant and many pharmacological activities of the plant.
Rosemary diterpenes have also been shown in recent years to inhibit neuronal cell death induced by a variety of agents both in
vitro and in vivo. The therapeutic potential of these compounds for Alzheimer’s disease (AD) is reviewed in this communication
by giving special attention to the chemistry of the compounds along with the various pharmacological targets of the disease. The
multifunctional nature of the compounds from the general antioxidant-mediated neuronal protection to other specificmechanisms
including brain inflammation and amyloid beta (A𝛽) formation, polymerisation, and pathologies is discussed.

1. Introduction

Rosmarinus officinalis L. (family, Lamiaceae), commonly
known as rosemary, is one of themost popular perennial culi-
nary herbs cultivated all over the world. Both fresh and dried
leaves of rosemary have been used for their characteristic
aroma in food cooking or consumed in small amount as
herbal tea, while rosemary extracts are routinely employed
as natural antioxidant to improve the shelf life of perishable
foods. In the latter case, the European Union has approved
rosemary extract (E392) as a safe and effective natural antiox-
idant for food preservation [1]. The plant is also known to be
employed in traditionalmedicines inmany countries even far
beyond its native Mediterranean region where it grows wild.
Among the pharmacologically validated medicinal uses of
rosemary are antibacterial [2], anticancer [3, 4], antidiabetic
[5], anti-inflammatory and antinociceptive [6–8], antioxidant
[5, 9], antithrombotic [10], antiulcerogenic [11, 12], improving
cognitive deficits [13], antidiuretic [14], and hepatoprotective
[15, 16] effects. The other major use of rosemary is in the
perfumery industry where the essential oils are employed as
natural ingredients of fragrances.

The culinary, medicinal, and fragrance uses of rosemary
are attributed to the vast arrays of chemical constituents
collectively known as plant secondary metabolites. Of these,
one group are small molecular weight aromatic compounds
called essential oils which play vital role in the fragrance
and culinary properties of the plant. Essential oils of rose-
mary dominated by 1,8-cineole, 𝛼-pinene, camphene, 𝛼-
terpineol, and borneol as principal constituents [17, 18]
are also responsible for various pharmacological effects of
the general antioxidant [8] and antimicrobial [2, 19–25]
properties known for many essential oils, as well as other
effects including anticarcinogenic activities [26]. The other
group of secondary metabolites of rosemary are polyphe-
nolic compounds including the flavonoids (e.g., homoplan-
taginin, cirsimaritin, genkwanin, gallocatechin, nepetrin,
hesperidin, and luteolin derivatives) and phenolic acid
derivatives (e.g., rosmarinic acid) [27–29]. By far the most
important group of rosemary compounds that gain signifi-
cant attention in recent years, however, are the unique class
of polyphenolic diterpenes. In this review, the chemistry
and pharmacology of rosemary diterpenes are scrutinised
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by giving special emphasis to their therapeutic potential for
Alzheimer’s disease (AD).

Accounting for an estimated 60 to 80 percent of dementia
cases in the elderly populations, AD has become one of the
major global health challenges of the century. The worldwide
prevalence of dementia is now estimated to exceed 36million
cases with a further projection of 115 million by 2050 [30–
32]. One of the current well-accepted pathologies of AD is
the “amyloid hypothesis” that puts the accumulation and
aggregation of amyloid-beta (A𝛽) as the major cause of the
progressive neuronal cells deaths in the brain. Neuronal dele-
tion particularly in the cortex region is now known to lead to
cognitive impairment including acquired learning skills and
memory. The hosts of behavioural symptoms arising from
AD include agnosia, aphasia, apraxia, erratic emotion, sleep
disorders, and interpersonal/social deterioration [33, 34].
Numerous studies have shown that these clinical symptoms
of AD are associated with the loss of cholinergic neurons
induced by toxicants such as A𝛽, reactive oxygen species
(ROS), inflammatory cascades, and excitotoxicity mecha-
nisms. Critical to the AD pathology is the basal forebrain
region fromwhere cortical cholinergic neurons originate.The
loss of neurons in the basal forebrain has been shown to
correlate with the degree and severity of clinical symptoms of
AD [34]. To date, the handful of drugs available to treat AD
are the acetyl cholinesterase (ACHE) inhibitors (e.g., rivastig-
mine, galantamine, tacrine, and donepezil) andN-methyl-D-
aspartate (NMDA) receptor antagonist (memantine) which
have some benefit in alleviating the clinical symptoms of
AD [35]. Drug of cure for AD is, however, neither available
nor within sight, and the search of new drugs from natural
sources should be considered as a viable strategy for the future
control of the disease.One group of compounds of interest are
the rosemary diterpenes which are comprehensively assessed
in this communication for their therapeutic potential for AD.
Special emphasis is given to the structural features of the
compounds with respect to their effects against specific AD
target.

2. Overview of Rosemary Diterpenes

2.1. Biosynthetic Perspective. Biosynthetically, diterpenes are
derived from the terpenoids or mevalonate pathway and
hence composed of repeating 5-carbon backbone skeleton,
isoprene unit(s). The two known isoprene building blocks
are isopentenyl pyrophosphate (IPP, 1, Figure 1) and dimethy-
lallyl pyrophosphate (DMAPP, 2) that polymerises in head-
to-tail fashion to form the 20-carbon diterpene precursor (4
isoprene units) called geranylgeranyl pyrophosphate (GGPP,
3). The processing of the GGPP through reactions including
cyclization, aromatisation, rearrangements, and a series of
reaction steps emanating from the loss of the phosphate
group, including removal of the carbonium ion, results in the
formation of the diterpene subgroups.The class of diterpenes
in rosemary identified so far is the abietane type (5–7) which
is composed of six–membered tricyclic ring system of which
one is aromatic (e.g., 7) [36]. Biosynthetically, abietane-
type diterpenes are known to derive from their immediate
precursor, labdane subclass (4), as shown in Figure 1. The

labdane group of diterpenes on their own are diverse natural
products that have been shown to include compounds of
novel structural and biological significances [37–40].

2.2. Diversity of Rosemary Diterpenes. The various types of
diterpenes isolated from rosemary are shown in Figure 2.
The basic skeleton of all of these diterpenes in rosemary
appears to be carnosic acid (7) which was first isolated
from the plant by Wenkert et al. [41] in 1965. It is now
well known that this compound is the major constituent of
rosemary that accounts to 1.5–2.5% of the dried leaves though
even higher amounts have been reported [41]. Like many
other secondary metabolites, the concentration of carnosic
acid (7) and other diterpenes in rosemary could vary due
to a host of environmental factors (e.g., sun light intensity
and water stress) and growth conditions [42–46] as well
as genetic factors as there are now several varieties that
could yield the compound in up to 10% yield by dry weight
[47]. Carnosic acid (7) is not unique to rosemary and its
distribution in sage and other taxonomically related species
has been revived recently by Birtić et al. [48]. Other taxo-
nomically unrelated plants such as Premna species have also
shown to synthesise pharmacologically significant abietane-
type diterpenoids with even more aromatisation than those
shown for rosemary diterpenoids in Figure 2 [49].

Although carnosic acid (7) is the principal constituent
of rosemary extracts, it is not a very stable compound once
extracted and may undergo oxidation to form the 𝛾-lactone
diterpene, carnosol (8). In fact, the conversion of (7) to (8)
in extracts of R. officinalis and Salvia officinalis has been well
documented [50], and the latter was considered as the prin-
cipal constituent of the plant in earlier studies. In addition
to carnosol (8), the oxidation of (7) is also known to yield
rosmanol (9) which differs from carnosol by possessing a free
hydroxyl group at C-7 position and the 𝛾-lactone formed via
the C-20-C-6 route [50–53]. The epimeric form of rosmanol
with stereochemistry difference at C-7 position has also been
demonstrated by the identification of (11) (epirosmanol [54]).
An enzyme catalysed conversion of carnosic acid (7) to
lactone derivatives via singlet oxygen-mediated reactions has
been suggested as a possible mechanism of these diterpene
lactones formation [55–57]. Enzymatic dehydrogenation and
free radical attack are now also generally considered as
a common route for the formation of various oxidation
products of (7) [55, 58]. An alternative structure, isorosmanol
(12) [57], where the lactone ring is formed via the C-6 instead
of the C-7 hydroxyl position, has also been identified in
rosemary extract. The further route of structural diversifica-
tion in rosemary diterpenes comes through methoxylation
and hence the 12-methoxyl derivative of carnosic acid (14)
and 11,12-dimethoxy isorosmanol (15) have been identified.
Methoxylation at the 7-position is also evident as 7-methoxy-
rosmanol (10) has been identified from rosemary [51]. All
these diterpenes are relatively polar and are not found in the
essential oil of rosemary [59].

The other structurally interesting group of rosemary
diterpene derivatives are diterpene quinones (16)–(19)
(Figure 3). Mahmoud et al. [60] reported the isolation and
structural elucidation of two new abietane-type diterpenoid
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Figure 1: Schematic presentation of the biosynthetic pathway of rosemary diterpenes.

O-quinones, rosmaquinone A (16) and rosmaquinone B, (17)
along with another known diterpene quinone, royleanonic
acid (18) and rosmanol. Another example of diterpene
quinone identified from rosemary was rosmariquinone (19)
[61].

Glycosylation is the common route of structural diversi-
fication in natural products. The study by Zhang et al. [54]
has resulted in the identification of polar diterpene glycosides
named as officinoterpenosidesA1 (20) andA2 (21) (Figure 4).
These polar compounds also differ from the carnosic acid
derivatives (7–15) not only by their glycosylation and differ-
ent oxygenation pattern but also by having an altered side
chain whereby the 16-methyl group has migrated to the C17
position.

Munné-Bosch and Alegre [44] have analysed the relative
concentrations of diterpenes in rosemary tissues. In general,
the level of carnosic acid (7) was about 6-fold higher than
other derivatives such as 12-O-methylcarnosic acid (14) and

carnosol (8), which (the latter two) were found in similar
concentrations. On the other hand, isorosmanol (11) was
found at slightly lower concentrations than carnosol (8)
while the 11,12-di-O-methylisorosmanol (15) was about 10
times less abundant than isorosmanol (11). The rosmanol (9)
concentration is regarded as a trace amount [44]. The most
important diterpenes in terms of biological significance of
the rosemary however remain to be carnosic acid (7) and
carnosol (8) which are most abundant (∼5% the dry weight)
and shown to account for over 90% of rosemary’s antioxidant
effects [48, 62]. Dried rosemary could contain about 0.2–1%
carnosol (8) [63] while many commercially available extracts
may be optimised to contain approximately 10.3% carnosol
(8) [64].

Bioavailability. Doolaege et al. [65] have studied the absorp-
tion, distribution, and elimination of carnosic acid (7) in rats
following administration via the intravenous (20.5±4.2mg/kg)
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and oral (64.3 ± 5.8mg/kg) routes. Their study revealed
that the bioavailability of (7) after 360min following the
intravenous dosage was 40.1%. The study also showed that
traces of (7) were found in various organs in its free
form while elimination in the faeces after 24 h after oral
administration was 15.6 ± 8.2% [65]. Another study by
Vaquero et al. [66] emphasised on the oral route of (7)
where the glucuronide conjugates were found to be the main
metabolites detected in the gut, liver, and plasma. The other
metabolites identified were the 12-methyl ether and 5,6,7,10-
tetrahydro-7-hydroxyrosmariquinone of (7) [66]. Since these
metabolites were detected as early as 25min following oral

administration, it was reasonable to conclude that rosemary
diterpenes are bioavailable. Interestingly, the free form of
(7) as well as its metabolites was detected in the brain [66]
suggesting possible effect in this vital organ.

3. Pharmacological Targets of Rosemary
Diterpenes Related to AD Therapy

3.1. General Pharmacological Effect of Rosemary Diterpenes on
the Brain and Memory. In an attempt to investigate the effect
of rosemary tea consumption on brain function, Ferlemi
et al. [67] have recently tested the potential anxiolytic- and
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antidepressant-like behaviour effect on adult male mice. The
result showed that oral intake of rosemary tea for 4 weeks
has shown a positive effect without alteringmemory/learning
when assessed by passive avoidance, elevated plus maze and
forced swimming tests. In an olfactory bulbectomy procedure
in mice, MacHado et al. [68] have also demonstrated that
rosemary extract possesses antidepressant-like effect and is
also able to abolish ACHE alterations although the spatial
learning deficit induced by the procedure was not altered.
Carnosic acid (7) has also shown to have neuroprotective
effects on cyanide-induced brain damage in cultured rodent
and human-induced pluripotent stem cell-derived neurons
in vitro and in vivo in various brain areas of a non-
Swiss albino mouse model [69]. As discussed in the later
sections, this effect is likely to be mediated via upregula-
tion of transcriptional pathways related to antioxidant and
anti-inflammatory mechanisms [69]. Protective effects of
carnosol (8) on rotenone-induced neurotoxicity in cultured
dopaminergic cells were also observed in vitro in parallel
with downregulation of apoptotic mechanisms [70]. It is also
worth noting that other components of rosemary, such as
essential oil constituents, are known to alter brain function
at therapeutic doses. For example, the cognitive enhancing
power of rosemary component, 1,8-cineole, has been well
documented [71]. In agreement with these observed effects of
the isolated compounds (7, 8), the crude extract of rosemary
has been shown to improvememory impairment when tested
in vivo using the scopolamine-induced dementia model of
AD [72].

3.2. Antioxidant Mechanisms. A number of simple in
vitro experiments where the antioxidant potential of rose-
mary diterpenes is demonstrated include lipid peroxida-
tion and protection of cells from oxidative cell death [73,
74]. Readers must however bear in mind that the antioxidant
potential of rosemary extracts and diterpenes on food pre-
servation and various biological models have been estab-
lished up to the level of large-scale commercial exploitations.
The emphasis in this communication is therefore limited
to highlighting mechanisms relevant to neurodegenerative

diseases. In this respect, Hou et al. [75] have shown that
carnosic acid (7) protects neuronal cells from ischemic
injury by scavenging ROS. The antioxidant mechanisms
of (7) and carnosol (8) are dependent on the loss of hydro-
gen from their phenolic hydroxyl groups leading to for-
mation of quinone derivatives [76, 77]. Through this anti-
oxidant mechanism, (7) can protect neuronal cells from
oxidative damage both in vitro and in vivo. Numerous
reports during the last few decades including ours have
shown that the antioxidant mechanism and/or radical
scavenging effect of polyphenolic natural products is
exceptionally prominent when the compounds possess the
catechol functional group [78–89]. The formation of the
various diterpene derivatives as the oxidation products of (7)
is also inherently related to its ability to interact with ROS
[50, 90].

The induction of phase II detoxifying enzymes is an
important defence mechanism for the removal of xenobiotics
and other toxicants of internal and external origin. A large
body of evidence to date indicates that the erythroid derived
2-related factor 2 (Nrf-2) is involved in the antioxidant
response elements- (AREs-) mediated induction of genes for
a variety of antioxidant enzymes, including phase II detoxify-
ing enzymes [91–93].The expression ofmany thiol-regulating
enzymes, such as glutathione S-transferase, glutamylcysteine
synthetase, and thioredoxin reductase, has also shown to
be dependent on Nrf-2 [94]. Of the various mechanisms
described for these antioxidant effects is direct S-alkylation
of the cysteine thiol of the Kelch-like ECH-associated protein
1 (Keap1) protein by the “electrophilic” quinone derivative
of (7) [95]. Keap1 is a regulatory protein associated with
the transcriptional factor Nrf2 that binds to the ARE [96].
The binding of electrophiles compounds with the cysteine
residues on Keap1 protein and the subsequent S-alkyl adduct
formation will allow the migration of the Nrf2 to the nucleus.
Nrf2 can then promote genes expression by binding to AREs
of phase II genes.Through thismechanism, the application of
electrophile compounds as antioxidant and neuroprotective
agents has been well documented in the various literature
[95, 97–99].
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Carnosol (8) possesses high electrophilic activity and
has been reported to activate Nrf2, phase II detoxifying
enzyme genes, and antioxidant enzymes [99, 100]. Direct
interaction of (8) with cysteine residues of the nuclear factor
kappa B (NF-𝜅B) has also been demonstrated [101–103]. In a
similar manor, carnosic acid (7) has been shown to protect
neuronal HT22 cells through activation of the antioxidant-
responsive element [104]. The free carboxylic acid and cat-
echol hydroxyl moieties have been shown to play critical
role in these effects [104]. All the available evidence now
therefore suggests that the major rosemary constituents (7
and 8) protect neurons against oxidative stress by activating
the Keap1/Nrf2 pathway. Xiang et al. [104], for example,
have demonstrated that (7) and (8) could protect HT22 cells
against oxidative glutamate toxicity through mechanisms
involving activation of the transcriptional ARE of phase
II genes including heme oxygenase-1, NADPH-dependent
quinone oxidoreductase, and 𝛾-glutamyl cysteine ligase, all
of which provide neuroprotection by regulating the cellular
redox system. Through antioxidant mechanism, (7) does
also protect the lipopolysaccharide- (LPS-) induced liver
injury through enhancement of the body’s cellular antioxi-
dant defence system as the levels of superoxide dismutase,
glutathione peroxidase, and glutathione in serum and liver
after the LPS challenge were restored [105]. Pretreatments of
RAW264.7macrophages with (7) also resulted in a significant
reduction of the hydrogen peroxide- or LPS-induced gener-
ation of ROS and nitric oxide while the heme oxygenase-1
(HO-1) protein expression was time- and dose-dependently
upregulated [76]. Moreover, carnosol (8) has been shown to
enhance the glutathione S-transferase (GST) and quinone
reductase activity in vivo [105].

The therapeutic potential of rosemary diterpenes for
AD must be seen in conjunction with the role of oxidant-
antioxidant mechanisms in the pathology of the disease. A
number of studies have clearly outlined the direct association
between ROS-mediated macromolecular cell damage and
neuronal cell death in AD, particularly in brain regions where
A𝛽 is highly prevalent [106, 107]. Interestingly, neuronal
cells in the brain appear to be more susceptible to ROS-
mediated cell damage than any other cell types for numerous
reasons including high oxygen consumption [108], high level
of polyunsaturated fatty acids content of cellmembrane [109],
association of the NMDA receptor activation with ROS-
induced neuronal apoptosis [110], and poor level of antiox-
idant defences including the catalase, glutathione peroxi-
dase, and vitamin E contents [111]. Furthermore, antioxidant
defences in AD have been found to be highly suppressed as
low level of SOD [112] and reduced formof glutathione (GSH)
[113, 114] as well as mitochondrial dysfunction [115] are all
common features of AD. Hence, the numerous reports on the
antioxidant effects of rosemary diterpenes along with their
specific effect on neuronal cells through the abovementioned
antioxidant mechanisms imply that they should be consid-
ered for further development as anti-Alzheimer’s agents.

Metal Chelation. High level of metal ions such as copper,
zinc, and iron have been found in the amyloid plaques of
AD brains [116–118]. Higher millimolar level of unregulated

metal ions in the brain has also been shown to arise due to
age related deterioration of the blood-brain-barrier leading
to unchecked access of the brain to metal ions [119]. As
described in the later section, these metal ions play critical
role in A𝛽-induced neurotoxicity in AD. Hence, a potent
metal chelative effect of a drug is an important feature of anti-
AD therapy. Our own study on polyphenolic compounds in
the last two decades has revealed that their biological effect
including enzyme inhibition could be partly explained by
their ability to chelate iron and other redox metals and, for
such effect, one of the best structural features in a molecule is
the orthodihydroxyl functional moiety [78–89].

The structural features of (7) and (8) are in favour of
strong metal chelation properties. Carnosol (8) has been
shown to inhibit Cu2+-induced LDL oxidation [120] but,
most importantly, metal (e.g., iron) chelation is one of the
knownmechanisms of antioxidant effects. Furthermore, iron
absorption from the gut is strongly suppressed by rosemary
extract [121].

3.3. Anti-Inflammatory Mechanisms. The roles of Nrf2 and
the antioxidant proteinHO-1 in neuroinflammatory response
have been well established.The search for effective Nrf2/HO-
1 activators that modulate the microglia inflammatory
response in AD would therefore have significant therapeutic
value. A recent study has further revealed that Nrf2 acti-
vation inhibits inflammatory gene expression [122] through
mechanisms involving HO-1 [123]. Lian et al. [124] have
also shown that carnosol (8) and rosemary essential oils
inhibit the adhesion of tumour necrosis factor-𝛼- (TNF-
𝛼-) induced monocytes to endothelial cells and suppress
the expression of intercellular adhesion molecule (ICAM-1)
at the transcriptional level in vitro. The anti-inflammatory
effect of (8) via inhibition of the TNF-𝛼-induced protein
expression of ICAM-1 was also shown to be extended to
other cell surfacemolecules such as the vascular cell adhesion
molecule- (VCAM-) 1 and E-selectin in endothelial cells as
well as interleukin- (IL-) 8 and the monocyte chemoattrac-
tant protein- (MCP-) 1 [125]. Moreover, Foresti et al. [126]
have shown that (8) inhibits the TNF-𝛼-induced signaling
pathways through inhibition of inhibitor of nuclear factor
kappa-B (IKK-𝛽) activity as well as the upregulation of
HO-1 expression. At the concentration of 5–20𝜇M, (8)
was demonstrated to upregulate Nrf2 and HO-1 leading
to downregulation of the inflammatory response (TNF-𝛼,
prostaglandin E-2, and nitrite) [126]. Carnosic acid (7) was
similarly shown to inhibit the expression of cytokine-induced
adhesion molecules on endothelial cells surface leading to
inhibition of monocyte-cell adhesions [127]. It does also
potently inhibit the LPS-induced rise in serum levels of
the proinflammatory cytokines (TNF-𝛼 and IL-6) in vivo
[128]. Both (7) and (8) have also shown to inhibit the
phorbol 12-myristate 13-acetate- (PMA-) induced ear inflam-
mation in mice with EC50 of 10.20 𝜇g/cm

2 and 10.70 𝜇g/cm2,
respectively. This activity was coupled with reduced level of
expression of IL-1𝛽 and TNF-𝛼 and cyclooxygenase-2 (COX-
2). In another study [129], both (7) and (8) inhibited the
formation of proinflammatory leukotrienes in cells with IC50
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of 7–20𝜇M as well as purified recombinant 5-lipoxygenase
(IC50 = 0.1–1 𝜇M).The study also showed that both (7) and (8)
potently antagonise intracellular Ca2+ mobilisation induced
by a chemotactic stimulus, coupled with inhibition of ROS
generation [129].The LPS-induced nitric oxide production in
Raw 264.7 cells was also shown to be inhibited by (8) with
IC50 of 9.4 𝜇M [130]. In an in vitromodel of brain inflamma-
tion, (7) inhibited the LPS-induced activation of cells of the
mouse microglial cell line MG6 [131], releasing inflammatory
cytokines such as IL-1𝛽 and IL-6.The nitric oxide production
associatedwith a decrease in the level of inducible nitric oxide
synthase has also been reported for (7) [131].

Glial cells are the major inflammatory cells of the
brain which produce massive amount of proinflammatory
cytokines (e.g., IL-1𝛽, IL-6, and TNF-𝛼) upon activation.
Numerous studies have highlighted the fact that high levels of
these inflammatory cytokines are critical in the coordination
of brain inflammation in AD [132, 133]. Moreover, both
microglia and astrocytes have been shown to be highly reg-
ulated in AD brains [133, 134]. The potent anti-inflammatory
activity of rosemary diterpenes in both the microglial cells
[126, 135] and other inflammatory models therefore suggests
their potential in tackling AD.

3.4. A𝛽 Mechanisms. Generally, amyloid plaques and neu-
rofibrillary tangles (NFT), which are closely linked to the
formation of toxic insoluble aggregates of A𝛽, have shown to
be the twomost common pathological hallmarks of AD [136–
138]. The A𝛽 is formed from the neuronal transmembrane
glycoprotein (100–130 kDa) called the amyloid precursor
protein (APP). The 𝛼-, 𝛽-, and 𝛾-secretases are the three
major proteolytic enzymes that process APP [139] through
two major pathways: the amyloidogenic and nonamyloido-
genic pathways.The non-amyloidogenic-dependent pathway
involves APP processing through 𝛼-secretase leading to
the generation of nonpathogenic amyloid products. In the
amyloidogenic pathway, 𝛽-secretase processes APP at the
N-terminus of the A𝛽 domain to generate the membrane-
attached fragment, C99, and the sAPP𝛽 fragment [140].
Further cleavage of the C99 fragment by 𝛾-secretase leads
to the formation of the two most common forms of A𝛽
peptides, A𝛽1–40 (90%) and A𝛽1–42 (10%), along with other
fragments. To date, a number of therapeutic agents that
inhibit APP processing have been identified and some appear
to be in clinical trials [141]. Of these, inhibitors of 𝛽-secretase
1 (BACE1) appear to be most important as this enzyme
takes the first rate limiting step in APP processing [142].
To the best of the author’s knowledge, an inhibitory effect
of rosemary diterpenes on 𝛽-secretase activity has not been
demonstrated but a promising effect on 𝛼-secretase has been
reported by Meng et al. [143]. In their study using the SH-
SY5Y human neuroblastoma cells, carnosic acid (7) showed
61% suppression ofA𝛽42 secretionwhen tested at the concen-
tration of 30 𝜇M. The effect was also coupled with enhanced
mRNA expressions of 𝛼-secretase but not the 𝛽-secretase
BACE1. Hence, the mechanism of action of (7) for APP
processing inhibition appears to be through promotion of
the normal non-amyloidogenic-dependent pathway. Similar
results were also demonstrated by Yoshida et al. [144] where

A𝛽 peptides (1–40, 1–42, and 1–43) production in U373MG
human astrocytoma cells was suppressed by (7) (50𝜇M).
The study also revealed a 55 to 71% inhibition of A𝛽 release
coupled with effect on mRNA expressions of an 𝛼-secretase,
but once again not the 𝛽-secretase BACE1 [144].

Once A𝛽 is formed, it undergoes a serious of poly-
merisation processes leading to the formation of insoluble
precipitates. It has been shown that small soluble oligomers as
well as amyloid fibril aggregates induce toxicity to neuronal
cells in AD [145–149]. Hence, various classes of natural
and synthetic compounds that inhibit the polymerisation
and stability of A𝛽 aggregates can be employed as viable
therapeutic agents for AD. Some of these agents identified
to date include chrysamine G [150], oligopeptides [151–155],
and plant polyphenols such as curcumin, myricetin, morin,
quercetin, kaempferol (+)-catechin, (−)-epicatechin, nordi-
hydroguaiaretic acid and tannic acid [156–158], antibiotics
(e.g., rifampicin [159]), and aspirin [160]. In this connection,
Meng et al. [143] have recently investigated the effect of
carnosic acid (7) on the viability of cultured SH-SY5Y
human neuroblastoma cells challenged by A𝛽42 or A𝛽43.
The cellular deletion in these cells treated with A𝛽42 or
A𝛽43 (monomer, 10 𝜇M each) was reported to be partially
reversed by treatment with (7) (10 𝜇M). The observed effect
was also coupled with reduced level of cellular oligomers
of A𝛽42 and A𝛽43 suggesting inhibition of oligomerisation
as the possible mechanism of action [143]. These data were
also in agreement with the in vivo observation where (7) has
been demonstrated to show beneficial effect in AD models
[161]. Rasoolijazi et al. [162] also provided direct evidence to
demonstrate the therapeutic potential of (7) for AD by using
A𝛽 toxicity in vivo.WhenA𝛽 (1–40) was injected into the Ca1
region of the hippocampus of rats, neurodegeneration and
cognitive impairment were evident as assessed by the passive
avoidance learning and spontaneous alternation behaviour
tests. Treatment by (7) appears to reverse these A𝛽 (1–40)
mediated changes suggesting the therapeutic potential of this
compound for AD [162]. The association between A𝛽 forma-
tion and aggregation with metal ions such as copper has been
reviewed in many literatures [163–166]. In agreement with
this finding, metal chelators have been shown to decrease
Alzheimer A𝛽 plaques [167]. It is now also known that A𝛽
is a redox-active peptide that reduces transition metals like
Cu2+ and Fe3+ leading to the generation of ROS [168]. Both
the polymerisation and toxicity of A𝛽 are therefore intimately
linked tometal ions andROS [169].The polymerisation of A𝛽
itself is shown to be enhancedwhen the antioxidant defence is
diminished [112, 170].Themultifunctional nature of rosemary
diterpenes in metal chelation and ROS scavenging is thus
likely to contribute to their effect against A𝛽 polymerisation
and toxicity.

3.5. ACHE Activity. The impairment of memory and cogni-
tive power in AD has been shown to be associated with the
loss of cholinergic neurons in the cortex [171–174]. Under
this circumstance where the acetyl choline (ACH) activity
in this region is below the normal level, one approach of
therapeutic intervention in AD is to minimise the degra-
dation of ACH by its enzyme, ACHE. Even though such
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drugs have limitation due to their undesirable side effects,
an overall beneficial effect in cognitive improvement and
behavioural symptoms have been clinically observed [175].
Szwajgier [176] has studied the effect of carnosic acid (7)
against ACHE along with 35 other phenolic compounds.
Interestingly, CA was identified as the most potent. In silico
molecular interaction study approach on AChE inhibitors
has also resulted in the identification of (7) as a potential
lead drug candidate [177]. The memory enhancing effect
of rosemary extract (200mg/kg, p.o.) in the scopolamine-
induced dementia model of AD has also been shown to
be linked with direct effect on ACHE activity [72]. While
the mRNA expression of butyrylcholinesterase (BuChE) in
the cortex was inhibited, its expression in the hippocampus
was enhanced by rosemary extract [72]. These effects on the
expression of enzymes however could be mediated through
indirect effect via other mechanisms.

4. General Summary and Conclusion

The industrial scale exploitation of rosemary for food preser-
vation and as natural antioxidant additives is attributed to
its phenolic constituents. The predominant phenolic com-
pounds that accounts for such effects as well as the various in
vitro and in vivo pharmacological properties of the plant are
the abietane type of diterpenes. Structurally, these groups of
compounds are based on the steroidal-like terpenoid skeleton
but have added pharmacophore of a phenolic structure. The
rosemary diterpenoids of pharmacological relevance are rep-
resented by (7) and (8) where the diorthohydroxyl/catecholic
functional group is evident. Through these structural fea-
tures, these compounds display a vast array of pharmaco-
logical effects ranging between antioxidant, metal chelation,
and anti-inflammatory properties. These very mechanisms
do also appear to be involved in the potential therapeutic
effect of the compounds for AD. The further effect of rose-
mary diterpenes in A𝛽 formation, aggregation, and toxicity
accounts for their additional benefit in tackling AD. Given
that AD is a complex disease involving many pathological
processes, treatment with multifunctional drugs like those
demonstrated by rosemary diterpenes constitutes a viable
therapeutic approach. The cascade of neurodegeneration
process in AD has lots of similarities with other diseases
like Parkinson’s disease. Interestingly, some of the rosemary
diterpenes such as carnosic acid (7) have been shown to have
beneficial effect in Parkinson’s disease model [178, 179]. It is
also worth noting that only (7) and (8) have been extensively
investigated for their possible therapeutic effect related toAD.
Other interesting diterpenes including the glycosidic forms
could have different bioavailability and therapeutic profile.
Further research in this field will therefore provide more
evidence on the therapeutic potential of rosemary diterpenes.
All the available date to date however suggest that their effect
on AD is very promising and further research including
clinical trials is well warranted.
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