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Summary

Emerging evidence suggests a significant role for inflammation and oxida-

tive stress as main contributors to the neuroprogression that is observed

in major depressive disorder (MDD), where patients show increased

inflammatory and oxidative stress biomarkers. The process of neuropro-

gression includes stage-related neurodegeneration, cell death, reduced neu-

rogenesis, reduced neuronal plasticity and increased autoimmune

responses. Oxidative stress is a consequence of the biological imbalance

between reactive oxygen species (ROS) and antioxidants, leading to the

alteration of biomolecules and the loss of control of the intracellular

redox-related signalling pathways. ROS serve as crucial secondary messen-

gers in signal transduction and significantly affect inflammatory pathways

by activating nuclear factor-jB and mitogen-activated protein kinase fam-

ily stress kinases. When present in excess, ROS inflict damage, affecting

cellular constituents with the formation of pro-inflammatory molecules,

such as malondialdehyde, 4-hydroxynonenal, neoepitopes and damage-

associated molecular patterns promoting immune response, and ulti-

mately leading to cell death. The failure of cells to adapt to the changes

in redox homeostasis and the subsequent cell death, together with the

damage caused by inflammatory mediators, have been considered as

major causes of neuroprogression and hence MDD. Both an activated

immune–inflammatory system and increased oxidative stress act synergis-

tically, complicating our understanding of the pathogenesis of depression.

The cascade of antioxidative and inflammatory events is orchestrated by

several transcription factors, with nuclear factor (erythroid-derived 2)-like

2 and nuclear factor-jB having particular relevance to MDD. This review

focuses on potential molecular mechanisms through which impaired

redox homeostasis and neuroinflammation can affect the neuronal envi-

ronment and contribute to depression.

Keywords: neuroinflammation; neuroprogression; reactive oxygen species;

signal transduction; transcription factors.

Introduction

Although it is well-established that neuroinflammation

and oxidative stress have important roles in neurodegen-

erative diseases and aging, growing evidence suggests their

involvement in the pathogenesis of major depressive dis-

order (MDD).1–5 MDD is a multifactorial mood disorder

that has been proposed to have a neuroprogressive nat-

ure1,6,7 with accelerated cellular aging8–10 and higher risk

of co-morbid somatic age-related diseases.11,12 Neuropro-

gression is considered a potentially progressive stage-

related process of neurodegeneration that includes apop-

tosis, reduced neurogenesis, reduced neuronal plasticity

and increased autoimmune responses, all of which can be

recognized on clinical, structural and biochemical levels

in MDD.1,13 As such, increased oxidative stress markers

along with a neuroinflammatory signature have repeatedly

been reported in the blood of depressed patients.14,15

Molecular signs of inflammation, apoptosis and oxidative

stress have been identified in post-mortem studies
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looking at gene expression profiles in the prefrontal cor-

tex of MDD patients,16 and the association between

depression, oxidative stress and antioxidant status has

been reported17,18 and confirmed in a recent meta-analy-

sis.19 However, our mechanistic understanding of molecu-

lar pathways through which impaired redox homeostasis

interacts with the immune–inflammatory system in rela-

tion to MDD is not completely understood. Elevated

peripheral markers of oxidative damage to lipids, proteins

and DNA, as well as low levels of antioxidant compounds

such as co-enzyme Q-10, glutathione, ascorbic acid, vita-

min E and polyunsaturated fatty acids, are regularly

detected in the blood of depressed patients.20 All of them

contribute to the low function of the antioxidative system

and to increased levels of oxidative stress, which have

been correlated with the severity of depression.21 Con-

versely, antidepressants decrease oxidative stress in animal

models of chronic stress22 and in depressed patients.23–25

We will discuss here the molecular mechanisms that link

oxidative stress, inflammation and MDD, starting with a

brief description of each.

The sources of reactive oxygen species and their
dual role in neural functioning

The brain accounts for more than 20% of the total con-

sumption of oxygen and despite oxygen being essential

for neurons, some of its products can be neurotoxic.26

Reactive oxygen species (ROS) are highly reactive mole-

cules derived from oxygen possessing unpaired electrons

that readily oxidize and modify the functions of RNA,

DNA, proteins and lipids, with inevitable damage

inflicted to neurons, which will be discussed in detail

below.27 Under normal conditions the levels of ROS are

balanced by an antioxidative defence system, but when

an imbalance between oxidants and antioxidants occurs

a state of oxidative stress is reached. Cells in the brain

are especially vulnerable to the detrimental effects of oxi-

dative stress because of their high metabolic rate, the

abundance of highly peroxidizable substrates and the

modest antioxidant levels present.28 High levels of oxida-

tive stress biomarkers, such as 8-hydroxydeoxyguanosine

and malondialdehyde, a by-product of polyunsaturated

fatty acid peroxidation and arachidonic acid, indicative

of oxidative DNA damage, together with significantly

lowered antioxidant enzyme activity, are a feature of

MDD.20

Interestingly, although ROS have been conventionally

considered as toxic by-products of cellular metabolism,

they also act as critical secondary messengers and essential

elements of fundamental neurobiological processes such

as cell growth, proliferation and differentiation,29 signal-

ling, migration and adhesion,30 immune responses, bio-

logical synthesis, regulation of gene expression31 and

regulated forms of cell death32 (Table 1). The generation

of ROS, within certain physiological levels, is necessary to

maintain redox homeostasis in a living organism. ROS

are crucial molecules in fighting bacterial agents causing

infections.33 Furthermore, there are data suggesting that

oxidative stress is produced as a result of routine adult

neurogenesis.34 Whether ROS are transit by-products of a

highly energy-intensive process, or essential signalling

molecules for further implementation of the cellular pro-

gramme, is still not clear.35 ROS are mainly generated as

a result of physiological intracellular metabolism in mito-

chondria and peroxisomes, involving a variety of cytosolic

enzyme systems. Higher levels of oxidative stress result in

mitochondrial dysfunction, which further leads to the

production of more free radicals and an exacerbation of

the cycle of oxidative stress.26 Of relevance to mood dis-

orders, chronic mild stress, known to be a major trigger

of depressive-like behaviour in animals, leads to damage

of mitochondrial ultrastructure and function in mouse

brain,36 and MDD has been associated with dysfunctional

mitochondria.37 Interestingly, ROS are also produced as

by-products of monoamine oxidase activity, which is vital

to the inactivation of the monoaminergic neurotransmit-

ters serotonin, dopamine, noradrenaline and adrenaline,

which are involved in the pathophysiology of depres-

sion.26

Table 1. Effects of reactive oxygen species depending on their levels and biological context

Pro-survival effects Pro-death effects

Activation of cell survival pathways Activation of programmed cell death pathways

Fight against environmental pathogens Damage of biomolecules:

• proteins – loss of function

• lipids – cells structural damage, formation of cytotoxic

by-products

• nucleic acids – changes in physiological gene expression, telomere shortening

Facilitation of signal transduction

Cells growth and differentiation control

Regulation of gene expression

Activation of Nrf2 transcription

factor – rise of antioxidative

defence system

Promotion of excessive inflammation
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Primary antioxidant defence and inflammatory
transcription factors

The cascade of antioxidative and inflammatory events is

orchestrated by several transcription factors, and two key

ones, widely expressed in the central nervous system, are

nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and

nuclear factor-jB (NF-jB). Although the full dynamics of

the interactions between Nrf2 and NF-jB remain to be

resolved, important aspects of each are worth describing.

Nrf2 is the main cellular defence pathway that is acti-

vated in different cell types as a result of oxidative stress,

leading to increased induction of the target antioxidants

and enzymes that defend against apoptosis.38 Under

unstressed conditions Nrf2 is anchored in the cytoplasm

through binding to Kelch like-ECH-associated protein 1

(Keap1), which degrades it by ubiquitination (Fig. 1).

Upon oxidative stress, Nrf2 travels to the nucleus where

it forms a heterodimer with small Maf protein, binds to a

DNA promoter antioxidant responsive element (ARE)

and initiates transcription of genes that code for proteins

that have cytoprotective effects.39 Nrf2 keeps under con-

trol the regulation of DNA damage recognition, repair

and removal, as well as the modulation of proteasomes

that are responsible for the degradation of damaged or

misfiled proteins. It also controls the levels of key regula-

tory molecules, including protective proteins such as

brain-derived neurotrophic factor and the anti-inflamma-

tory interleukin-10 (IL-10).40 Due to the vast variety of

these protective effects, Nrf2 has been suggested as a

promising target to counteract ROS-mediated damage in

neurodegenerative diseases and depression.41,42 The broad

functions of Nrf2 upon activation by oxidative stress have

been shown with primary cortical neurons, where micro-

array data revealed that Nrf2 is important for the expres-

sion of immune and inflammation genes together with

growth factors, signalling proteins and neuron-specific

genes.43 Further support for the beneficial role of this

transcription factor comes from studies in mice where its

deletion resulted in depressive-like behaviour, reduced

levels of dopamine and serotonin and increased levels of

glutamate in the prefrontal cortex. Interestingly, treatment

of these Nrf2 knockout mice with the anti-inflammatory

drug rofecoxib reversed their depressive-like behaviour,

suggesting the involvement of Nrf2 in the induction of

inflammatory cascades.44 Conversely, inflammation

around birth may have long-term detrimental effects on

the Nrf2 system. As such, prenatal inflammation of

rodents by exposure to lipopolysaccharide resulted in a

dysfunctional Nrf2 response in adulthood, indicated by

lower levels of glutathione and a decrease in the activity

of glutathione synthase.45

Activation of NF-jB by ROS and its redox-related
targets

The heterodimeric protein NF-jB is involved in the con-

trol of a large number of physiological cellular processes,

such as immune responses, cellular growth and apopto-

sis.46 Under normal conditions it is inactive in cellular

ROS
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Figure 1. Activation of transcription factors by reactive oxygen species (ROS). ROS can activate different transcription factors directly and/or

through kinases. At low levels of oxidative stress, Nrf2 is activated: it is released from the cytoplasm and translocates into the nucleus where it

forms a heterodimer with small Maf protein, binds to a DNA promoter Antioxidant Responsive Element (ARE) and initiates transcription of an-

tioxidative genes, leading to cytoprotective effects. At higher levels of oxidative stress, nuclear factor-jB (NF-jB) is acivated: IjB is phosphory-

lated by IKK and as a result NF-jB is released from the cytoplasm and translocates into the nucleus. Depending on the cellular context, NF-jB
can activate inflammatory cascades, pro-oxidant or antioxidant genes.
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cytoplasm, where it is bound to the inhibitory protein

IjB (Fig. 1). Upon ROS stimulation, IjB is phosphory-

lated by IKK-kinase and as a result NF-jB is released

from the cytoplasm and translocated into the nucleus.46

In addition to this activation of NF-jB through the clas-

sical IKK-dependent pathway, there are other pathways

that depend on the cell-type.47 ROS can activate stress-

activated kinases such as extracellular signal-regulated

kinase (ERK), Jun N-terminal kinase (JNK), and p38

mitogen-activated protein kinases that stimulate NF-jB,
which in turn induces the expression of pro-inflammatory

cytokines.48 Furthermore, ROS can modulate NF-jB
activity both positively and negatively depending on the

context.49 Whereas through these mechanisms oxidants

enhance NF-jB nuclear translocation and therefore its

activation, direct oxidation of NF-jB decreases its DNA

binding activity and therefore transcription of genes. NF-

jB can also target antioxidant genes as well as promote

ROS production, which has physiological relevance. For

example, activation of JNK by tumour necrosis factor-a
requires the generation of ROS, and this process can be

counteracted by NF-jB through the induction of genes

that encode antioxidizing enzymes such as manganese-

superoxide dismutase and ferritin heavy chain.50,51 Anti-

oxidant and pro-oxidant target genes of NF-jB and their

functions are presented in Table 2.52

Oxidative stress and neuroinflammation

Regulatory pathways linking inflammation and ROS pro-

duction are spread beyond transcription factors to pro-

teins and small molecules. Specifically, the generation of

ROS is tightly regulated by inflammatory signals, such as

the Negative Response ROS (NRROS) protein, highly

expressed in immune organs and also detected in the

brain. This protein is responsible for the degradation

NOX2, one of the membrane-bound subunits of the

NADPH oxidase complex, through which a great number

of ROS are produced in response to inflammatory stim-

uli. The NRROS negative regulation of ROS production

was shown in interferon-c and lipopolysaccharide-primed

phagocytic cells and in NRROS-knockout mice.53 Of rele-

vance, down-regulation of NRROS, previously known as

Lrrc33 protein, led to increased levels of ROS, whereas

knockdown of this enzyme in dendritic cells greatly

increased NF-jB activation, even in the absence of any

inflammatory stimulation.54 Hence, chronic inflammation

in depressed patients might down-regulate NRROS, there-

fore resulting in an increase in the levels of ROS and, via

a positive feedback loop, a further stimulation of the

inflammatory cascade (Fig. 2).

ROS are necessary for the activation of the multipro-

tein inflammatory complexes known as inflammasomes,55

Table 2. Antioxidant and pro-oxidant targets of nuclear factor-jB (NF-jB)

NF-jB targets Functions

Pro-oxidant NF-jB targets

NADPH oxidase NOX2 (gp91 phox) Promotion of reactive oxygen species (ROS) production for immune defences

and cell signalling

Xanthine oxidase/dehydrogenase (XOR, or xanthine

oxidoreductase)

ROS production through oxidation of hypoxanthine to xanthine

Inducible nitric oxide synthase (iNOS or NOS2) NO production that further reacts with superoxide leading to formation of the highly

reactive peroxynitrite and resultant radicals

Cyclooxygenase-2 (COX-2) Generation of superoxide during conversion of arachidonic acid into prostaglandin

H2 (PGH2) by a free radical mechanism

Cytochrome p450 enzymes Production of ROS when uncoupled, particularly H2O2 and hydroxyl radicals

Antioxidant NF-jB targets

Manganese superoxide dismutase (MnSOD),

copper-zinc superoxide dismutase (Cu,Zn-SOD)

Conversion of O�
2 into H2O2

Ferritin heavy chain (FHC) Prevention of iron-mediated generation of highly reactive .OH radicals from H2O2

Thioredoxin-1 (Trx1), thioredoxin-2 (Trx2) Reduction of oxidized proteins

Glutathione S-transferase pi (GST-pi) Catalysis of the reaction of the GSH thiolate to toxic electrophilic compounds, repair of

damage from oxidative stress

Glutathione peroxidase-1 (Gpx1) Catalysis of the conversion of H2O2 into water using glutathione as a substrate, reduction

of lipid peroxides and peroxynitrite

Metallothionein-3 (MT3) Regulation of metal toxicity scavenger of . O�
2 and .OH radicals

NADPH dehydrogenase (quinone) 1 (NQO1) Prevention of reduction of quinones that produces radical species by its enzymatic

activity

Haeme oxygenase 1 (HO-1) Catalysis of haeme degradation resulting in the formation of carbon monoxide and

biliverdin; biliverdin is subsequently reduced to bilirubin, which is a potent

antioxidant
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which are a major sensor of cellular stress signals. For

example, the NACHT, LRR and PYD domains-containing

protein 3 (NLRP3) inflammasome, the most extensively

studied inflammasome, formed after the oligomerization

of NLRP3 and subsequent recruitment of pro-caspase-1,

increases IL-1b production and activates NF-jB, further
promoting inflammatory cascades.56–59 ROS change the

chemical structures of different molecules, generating a

variety of modified oxidation-specific epitopes, which are

highly immunogenic and can cause activation of adaptive

immunity, such as IgG or IgM-mediated autoimmune

responses.60 For example, significantly greater serum IgG

and IgM against oxidized low-density lipoproteins were

reported in patients with major depression compared

with controls.61 Furthermore, a separate study in serum

of depressed patients detected significant reductions of

IgA, which possesses immunomodulatory properties, indi-

cating an attenuation of the anti-inflammatory system in

MDD.62

As many of the oxidation-specific epitopes have strong

pro-inflammatory properties, they are considered as novel

kind of damage-associated molecular patterns (DAMPs),

discussed below. These molecules can initiate and perpet-

uate non-infectious immune responses as they bind to

cellular and soluble pattern recognition receptors trigger-

ing inflammation.63 Hence, the formation of these epi-

topes contributes to inflammation and to pathogenic

inflammatory pathways postulated to underlie depression,

such as tryptophan catabolites produced by the kynure-

nine pathway.64 The amino acid tryptophan, a serotonin

precursor, is metabolized to kynurenine mainly by indole-

amine 2,3-dioxygenase through induction by pro-inflam-

matory cytokines, such as interferon-c, tumour necrosis

factor-a, IL-2 and IL-1b, and also directly by ROS.64,65

One of the major products of direct tryptophan oxidation

identified in vivo is kynurenine.66 Kynurenine may be fur-

ther metabolized to excitotoxic free radical generator

compounds including 3-hydroxykynurenine and quinoli-

nic acid, whose increased levels, together with increased

indoleamine 2,3-dioxygenase activity, have been associ-

ated with MDD.67,68 As a result, oxidative stress contrib-

utes to elevated neurotoxic compound via tryptophan

oxidation.66

The above-mentioned mechanisms might underlie the

findings of increased oxidative stress markers and neuro-

inflammation in depressed patients. We will describe in

detail how they potentially contribute to neural cytotoxic-

ity leading to neuroprogression.

Deteriorating effects of ROS and redox-derived
inflammatory molecules on neurons

Excessive levels of ROS disrupt the neural cytoarchitec-

ture and affect the function of a variety of biological mol-

ecules including lipids, nucleic acids and proteins. As a

result some of them undergo modifications and lose anti-

inflammatory properties while many more are newly

formed, with some possessing pro-inflammatory features.

Lipid peroxidation is particularly important. Polyunsat-

urated fatty acids, which are more sensitive to oxidation

than saturated fatty acids,69 inhibit prostaglandin E2 syn-

thesis and modulate immune functions by regulating the

production of a variety of cytokines, including IL-1, IL-6,

tumour necrosis factor-a and interferon-a.70 Lower levels

of polyunsaturated fatty acids, possibly due to oxidation,

have been proposed to contribute to depression patho-

physiology. Conversely, polyunsaturated fatty acids have

shown protection in subjects at increased risk of develop-

ing interferon-a-induced depression, and also against

cytokine-induced depressive-like behavioural changes in

animal models.71 Moreover, research has revealed that

some molecules generated as a result of lipid peroxidation

are recognized by innate immunity and thereby promote

inflammatory responses.63 There are two broad outcomes

to lipid peroxidation: structural damage to membranes

and generation of oxidation-specific epitopes. These epi-

topes are cytotoxic secondary products that are formed

when lipid hydroperoxides break down in biological sys-

tems, such as 4-hydroxy-2-nonenal (4-HNE) and mal-

ondialdehyde, both known to be pro-inflammatory.72,73

These molecules serve as indirect markers of oxidative

stress in humans, with increased levels detected in

depressed patients. In particular, elevated levels of mal-

ondialdehyde, which cause protein damage and genera-

tion of advanced lipoxidation end products that also have

pro-inflammatory characteristics,20 have been detected in

peripheral blood74 and serum and plasma75 of MDD

patients. Similarly, other increased markers of lipid

NRROS
(Lrrc33)

NOX2
degradation

Production of
ROS

Inflammatory
stimuli

NF-κB

Figure 2. Proposed closed loop of inflammation and reactive oxygen

species (ROS) production. Inflammatory stimuli inhibit Negative

Response Reactive Oxygen Species (NRROS) protein, in turn inhibit-

ing the degradation of NOX2, which is responsible for ROS produc-

tion. As a result, more ROS are produced in response to

inflammation. ROS in turn activate nuclear factor-jB (NF-jB) and

further promote inflammation.
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peroxidation serving as DAMPs such as thiobarbituric

acid reactive species and 8-iso-prostaglandin-F2a in

plasma,76 have not only been detected but also correlated

with the severity of depression.77

Nuclear and mitochondrial DNA also suffer from the

interaction with ROS, by modification of bases, single- and

double-DNA breaks, loss of purines, damage to the deoxy-

ribose sugar, DNA–protein cross-linkage, and damage to

the DNA repair system.78 All of these changes lead to alter-

ations of genetic regulation and can induce programmed

cell death. Neurons may respond to unrepaired DNA dam-

age by silencing expression of the affected genomic region,

which may be vital for cell survival rather than by undergo-

ing apoptosis.79 A particular transformation of one of the

DNA bases leads to 8-hydroxydeoxyguanosine, which has

been widely used as a marker of DNA damage in clinical

studies and found to be elevated in depressed patients.7,80,81

Consistent with previous data showing increased telomere

shortening in mood disorders patients,82 results from a

large psychiatric cohort study showed higher levels of telo-

mere shortening among current MDD patients and those

in remission, supporting the hypothesis of accelerated cel-

lular aging in depression.8 Studies demonstrated an expo-

nential correlation between cellular oxidative stress levels

and telomere shortening rates, suggesting the significant

contribution of oxidative stress-mediated DNA telomere

damage as an important determinant of cellular senescent

phenotype.83,84

Proteins can undergo direct or indirect deterioration

following oxidative stress including peroxidation, damage

to specific amino acid residues, changes in their tertiary

structure, degradation and fragmentation. As a result,

proteins lose their enzymic activity, and because of

changes in the type and level of cellular proteins, physio-

logical cellular functions are altered.78 An interesting

example is neural cell adhesion molecule (NCAM), a

membrane-bound glycoprotein expressed on the surface

on neuronal and glial cells. It mediates interactions

between different types of neural cells and plays a signifi-

cant role in fetal and adult neurogenesis, regulating pro-

liferation, differentiation and cell survival. NCAM

knockout mice showed behavioural symptoms of depres-

sion and attenuated hippocampal neurogenesis,85 and

decreased levels of NCAM were detected after exposure of

primary cultured cortical neurons to oxidative stress,

which correlated with neuronal death.86 Importantly,

many proteins serve as vital secondary messengers and

the functional modifications that proteins can undergo

upon oxidation can affect neuronal physiology, which is

discussed in the next section.

ROS in signal transduction

Reactive oxygen species cause post-translational protein

modifications in a variety of ways including carbonyla-

tion, oxidation of aromatic amino acids, methionine sul-

phoxidation and oxidation of thiol groups on cysteine

residues,87 Among these, the thiol transformations are

particularly important because they are reversible and

therefore of great physiological relevance in cellular sig-

nalling.88 The most critical to cell fate are transformations

of mitogen-activated protein kinases, including ERK,

JNK, p38 and BMK1, which are all tightly regulated by

ROS. Depending on the site of modification, products of

these transformations can inhibit or stimulate kinase

activity in a similar way, as happens through phosphory-

lation.89,90 Interestingly, ERK, p38 and JNK have been

indicated as potential kinases that promote NF-jB and

Nrf2 activation. In addition to enzymes from the mito-

gen-activated protein kinase family, phosphatidylinositide

3-kinases and protein kinase C are also involved in anti-

oxidant regulation. Both of them catalyse phosphorylation

of Nrf2, which leads to its dissociation from the Keap 1–
Nrf2 complex and causes antioxidant response element-

mediated cellular antioxidant responses.91,92 Importantly,

the PI3K/Akt pathway is activated and plays a pleiotropic

protective role under oxidative stress through modulation

of glycogen synthase kinase 3b, forkhead box-O transcrip-

tional activity and gluthatione metabolism, as shown in

mouse hippocampal neurons.93 In response to oxidative

insults, protein kinase pathways are also regulated via

phosphorylation of a number of growth factor receptors

including the epidermal growth factor receptor, platelet-

derived growth factor receptor and the T-cell receptor

complex.94 Whether these pathways are activated or

inhibited mostly depends on the cell type and the level of

ROS. At higher ROS levels, JNK2 and p38 are activated,

stimulating a cell-cycle arrest programme.90 Under nor-

mal conditions the redox regulatory protein thioredoxin

has been shown to inhibit the apoptosis signal-regulating

kinase 1, involved in activation of JNK and p38. Altered

equilibrium of redox homeostasis towards higher levels of

ROS causes dissociation of the thioredoxin– apoptosis

signal-regulating kinase 1 complex, leading to activation

of p38 and JNK.94 Although there is evidence for both

pro-apoptotic and anti-apoptotic properties of p38 under

oxidative stress injury, the influence of JNK activation on

cell fate is still controversial, because of a lack of efficient

pharmacological inhibitors that target this kinase.94

Neuronal cell death upon oxidative stress and
neuroinflammation

A fundamental process of all neurodegenerative disorders

is neuronal cell death. Until recently the most distinct

forms of cell death were apoptosis and necrosis, but other

forms also affect neurons, and we will describe how oxi-

dative stress and inflammation influence each of them.

Apoptosis is a genetically programmed event, regulated

via signalling pathways and high energy demanding,
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where organized degradation of the cell occurs within an

intact plasma membrane.95 Its initiation can be imple-

mented through a large number of mechanisms, including

activation of stress kinases such as p38 and JNK by ROS.

Morphologically apoptotic cells appear shrunken, with

dense cytoplasm and tightly packed organelles, pyknotic

nucleus, DNA fragmentation and membrane blebs.

Necrosis occurs in response to acute non-physiological

stimuli and is associated with cell swelling, gross mem-

brane damage and leakage of cell constituents into the

extracellular space. Necrosis leads to the formation of

DAMPs, damage of surrounding tissues and local inflam-

mation. Inversely, necrosis can also be a result of general

neurotoxicity, where high levels of oxidative stress and

inflammation play major roles.96

Oxytosis is another form of cell death, more recently

described. This is an oxidant-induced cell death with

morphological characteristics of necrosis, but which

appears to be regulated. It has its own signalling pathways

that are independent from classical apoptotic path-

ways.97,98 These pathways, yet to be explored, could be

potentially targeted therapeutically.

Reactive oxygen species can also cause pyropto-

sis – another form of cell death with underlying inflamma-

tory mechanisms. In this case ROS activate inflammasomes

that lead to caspase-1 activation, IL-1 and IL-18 produc-

tion, formation of membrane pores, release of these

compounds out of the cell and subsequent cell death.99

There are ongoing debates about what kind of death

cells undergo under various conditions.100 In rat neuronal

cultures it was experimentally demonstrated that ROS

could act as initiators or executioners of neuronal death

through both necrosis and apoptosis.101 In primary

cultures of murine neocortical neurons following H2O2-

induced oxidative stress no activation of apoptotic

markers, such as caspases, was observed. Instead, auto-

phagic activity was elevated and necrosis features were

found, suggesting another combination of molecular

mechanisms of neuronal cell death.102 Further exploration

is therefore warranted.

Conclusions and future directions

Despite sufficient evidence linking depression, inflamma-

tory status and oxidative stress, many aspects remain to

be explored. Identifying physiological and pathophysio-

logical levels of ROS as well as inflammatory molecules in

humans and even across different tissues in the body

would allow potential therapeutic strategies directed to

maintain physiological levels. Ideally these could be organ

and pathology oriented, offering a platform for develop-

ing relevant biomarkers and providing a step towards

personalized medicine. The measurement of ROS contin-

ues to be extremely challenging, especially in vivo, because

of their short half-life. As ROS functionality and detri-

mental effects are specific to different cell types, in differ-

ent context and depending on their levels, further

research is necessary in areas of the brain that are known

to be affected in depression for delineating specific molec-

ular pathways leading to the progress of the disease.

Additionally, a deeper understanding of the interplay

between redox status and the immune–inflammatory sys-

tem would help the identification of the correct targets of

neuroprogression to consider in depression. Hence, the

ultimate effects of ROS on signal transduction, their

interference with inflammatory pathways and their conse-

quences to the cell are mostly determined by the level of

these molecules present in the intracellular environment,

where higher levels lead to neuroinflammation and cell

death. Transcriptional changes of adaptive immunity in

MDD, such as activation of NF-jB, can precede inflam-

matory cascades and oxidative stress, or conversely they

can be activated by cytokines and ROS. These changes

primarily occur in response to stressful events known to

contribute to MDD.103 One of the features of acquired

immunity is the development of immunological memory,

which might explain chronic maladaptive alterations lead-

ing to a vicious cycle of chronic inflammation and oxida-

tive stress, frequently observed in MDD patients.

Furthermore, chronic psychological stress can lead in the

long-term to the activation of defence mechanisms that

are no longer beneficial but instead accelerate the disease

progress.104

Interestingly, a recent meta-analysis that evaluated

structural brain changes in depressed patients demon-

strated reduced hippocampal volume as a consistent find-

ing in those with illness duration of more then 2 years

and in those who experienced more then one depressive

episode.105 Although the underlying reasons for these

observations are not clear, neuronal cell death is hypothe-

sized to play a major role, where oxidative stress might

impose the main damage either directly or through

inflammatory pathways. There is plenty of evidence of

excessive levels of ROS and inflammatory biomarkers in

depressed patients, activation of stress kinases promoting

further oxidative stress and neuroinflammation and hence

cell death, which might all contribute to neuroprogression

and depression. Therefore, investigation of these pathways

presents an enormous area for the development of poten-

tial therapeutic strategies for depression.
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