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ABSTRACT 
 

Aims: This study was undertaken to evaluate the antipsychotic property of the ethanol extract of    
T. ivorensis (EETI) stem bark in mice  
Study Design: The study used experimental animal models predictive of human psychosis in mice 
Place and Duration of Study: Neuropharmacology Laboratory, Department of Pharmacology and 
Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Oyo State, Nigeria, 
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between June 2013 and July 2014. 
Methodology: Antipsychotic activity of EETI [125-1000 mg/kg, per os (p.o.)] was assessed based 
on the inhibition of stereotyped behavior induced by apomorphine (1 mg/kg, i.p.) or ketamine (10 
mg/kg, i.p.) and ketamine-induced hyperactivity for positive symptoms in mice. Ketamine-enhanced 
immobility in forced swim test (FST) and reversal treatment of ketamine-induced cognitive 
dysfunction for negative and cognitive symptoms in mice respectively, and drug-induced ptosis and 
catalepsy in mice were also employed to further evaluate the antipsychotic property of EETI. 
Results: EETI (125-1000 mg/kg, p.o.) significantly (p<0.05) inhibited apomorphine or ketamine-
induced stereotypy, and ketamine-induced hyperactivity. Moreover, EETI significantly (p<0.05) 
attenuated the enhanced immobility and ameliorated the cognitive dysfunction by ketamine (30 and 
20 mg/kg, i.p.), respectively in mice. EETI also dose dependently depleted the monoamine as 
indexed by the ptosis paradigm, however did not demonstrate cataleptic behavior as indexed on 
the catalepsy scale which suggest lack of expyramidal symptoms. 
Conclusion: This study provides valuable evidence which suggests that T. ivorensis contain 
biologically active constituents that possess antipsychotic activity. Thus, justifying its 
ethnomedicinal claims in the management of psychotic disorders. 
 

 
Keywords: Psychosis; schizophrenia; antipsychotics; Terminalia ivorensis. 
 

1. INTRODUCTION  
 
Psychosis (e.g. Schizophrenia) is a hetero-
geneous chronic neurological disease charac-
terized by severe behavioral perturbations with 
distorted or non-existent sense of reality [1] that 
affects an average of approximately 1% of the 
World's population [2]. It commonly begins in late 
adolescence years [3] and often associated with 
polygenetic, environmental and neuro-
developmental vulnerability factors [4]. It is 
represented by a group of complex symptoms 
characterized by positive (hallucinations, 
delusions, disorganized speech and thought), 
negative (flat expressions, anhedonia), and 
cognitive (deficits in learning, working memory) 
symptoms [5].  
 
The dopamine dysregulation with hyperfunction 
of the mesolimbic dopamine system was the 
original tenet theory underlying the basis of 
schizophrenia [6] and the first animal models 
were developed on the basis of pharmacological 
manipulation in an attempt to mimic this feature 
[7], which respond to drugs that affect majorly the 
dopaminergic system, but does not replicate the 
negative or cognitive symptoms seen in 
schizophrenia [8]. In contrast, a widely used 
animal model of schizophrenia involves the acute 
or repeated administration of sub-anaesthetic 
doses of ketamine [9]. In rodents, N-methyl-D-
aspartic acid receptor (NMDAR) blockade 
induces hyperactivity, stereotypy behavior, 
deficits in prepulse inhibition [10,11], social 
interaction and memory [12], which models the 
positive, negative and cognitive symptoms of 
schizophrenia, respectively [13]. 

Drugs prescribed for the treatment of psychosis 
can be categorized as typical and atypical. The 
typical class of antipsychotics is effective against 
the positive symptoms, and also possesses 
extrapyramidal side effects. Whereas the atypical 
class are effective in ameliorating the positive, 
negative as well as the cognitive symptoms and 
possess lesser extrapyramidal side effects 
however, accentuates greater risk of metabolic 
disorders including diabetes, agranuloctosis etc. 
Long term use of these drugs may even cause 
oxidative imbalance and thereby further enhance 
the progression of the disease [14,15]. In this 
contest, we need drugs with lesser side effects. 
Hence, natural products become the drug of 
choice and investigations have been extended 
for the search of novel and better tolerated 
molecules from plant sources. Moreover, Natural 
products structurally have characteristic high 
chemical diversity, biochemical specificity and 
other medicinal properties that make them 
favourable as lead structures for the remedies of 
a number of disorders including 
neuropharmacological activity [16]. 
 
Terminalia ivorensis is an indigenous plant from 
the family Combretaceae [17]. It is commonly 
called idigbo in Nigeria and some African 
countries [18]. Many bioactive studies carried out 
on T. ivorensis stem bark revealed that the plant 
showed great promise as antioxidant [19,20], 
antibacterial activity [21], anti-inflammatory and 
anti-arthritis [22] activities. In ethno-medicine, the 
pulverized leaves of the plant are used as 
poultice to treat burns and bruises [18]. The 
decoction of the bark plant is also used in Ivorian 
traditional medicine for sores and other 
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numerous diseases including cough, diarrhea, 
hypertension, diabetes and tooth decay [18]. The 
stem bark of T. ivorensis is reported to be used 
as tranquilizers in the treatment of insomnia, 
epilepsy, and psychotic disorders in south 
Western Nigeria [23].    
 

T. ivorensis stem barks are known to be rich in 
several phytochemicals including butilinic acid, 
oleanolic acid, terminolic acid, ellagic acid, 
glycirrhetic acid, saponins (triterpenoid 
ivorenosides A, B, and C), quercetin, steroids, 
[22], polyphenols, flavonoids, saponins, steroids 
[19], punicalagin and punicalin [20], some of 
which have demonstrated different biological 
effects among such as sedative, antioxidant, 
anti-neuroinflammatory, and neuroprotective 
properties [24,25]. Recently, Adeoluwa et al. [26] 
reported the sedating and analgesic effect of the 
stem bark in mice. In the same contest, Ben-Azu 
et al. [27] also demonstrated the possible 
neuroprotective compensatory mechanism of 
action of stem bark extracts of T. ivorensis in the 
reversal treatment of ketamine-induced 
schizophrenia-like behavior and oxidative 
damage in mice. 
 
To further investigate the medicinal claims and 
neuropharmacological effect of T. ivorensis, the 
present study hypothesized that administration of 
ethanol extract of T. ivorensis stem bark might 
ameliorate some of the behavioral symptoms of 
schizophrenia. Hence, this study was undertaken 
to evaluate the effect of the ethanol extract of     
T. ivorensis stem bark (EETI) on animal models 
predictive of human psychosis. 
 

2. MATERIALS AND METHODS 
 
2.1 Plant Materials 
 
The stem bark samples of T. ivorensis were 
collected in March, 2014 at the Olupkele Forest 
Reserve, Ibadan, Oyo state, Nigeria. 
Taxonomical identification and authentication of 
the plant were done by Mr. O. S. Shasanya, at 
the herbarium section of the Forestry Research 
Institute of Nigeria (FRIN), Ibadan, Nigeria. A 
voucher specimen with identification number, FHI 
109800, was deposited and compared with the 
reference specimen. 
 

2.2 Extraction of Plant 
 

The stem bark was air-dried for 6 to 7 weeks, 
and pulverized with an electric crusher. 
Pulverized stem bark (200 g) was macerated in 

70% ethanol (2 L) for 48 h after which it was 
filtered on absorbent cotton and on Whatmann 3 
mm paper under sterile conditions. The filtrate 
was concentrated using Rotary evaporator 
(BUCHI

®
 Rotavapor Model R-215, Buchi 

Labortechnick AG, Flawil, Switzerland) at 40°C 
to give a semisolid residue. The dark brown 
paste obtained was dried to a constant weight 
(7.6 g) in a desiccator before storage in a 
sterilized glass vial for use. 
       

2.3 Experimental Animals 
 
Adult male Swiss albino mice weighing 20-25 g 
used for this study were obtained from the 
Central Animal House, College of Medicine, 
university of Ibadan. The animals were housed 
five per plastic cage (42 x 30 x 27 cm) in a 
controlled environment at room temperature 
(25±1°C) with a 12:12 h light/dark cycle. They 
were fed with standard rodent pellet food and 
water ad libitum throughout the experimental 
period. They were acclimatized for at least 1 
week prior to commencement of the 
experiments. The experiments were performed 
after approval of the protocol by the Ethics 
Committee of the University of Ibadan according 
to the National institutes of Health Guide for Care 
and Use of Laboratory Animals (Publication No. 
85-23, revised 1985). Also, efforts were made to 
minimize the suffering of the animals. 
 

2.4 Drugs 
 

Apomorphine (Sigma-Aldrich, St. Louis, USA), 
ketamine hydrochloride (Sigma-Aldrich, St. 
Louis, USA), haloperidol (Sigma-Aldrich, St. 
Louis, USA) and risperidone (Sigma-Aldrich, St. 
Louis, USA). Haloperidol was used as the 
positive control for apomorphine-induced 
schizophrenia while risperidone was used as the 
positive control antipsychotic for ketamine 
models, because ketamine-induced model of 
schizophrenia has been demonstrated to be 
more responsive to atypical antipsychotic [12]. 
Different doses of ketamine were used in this 
study: 10 mg/kg, i.p. for hyperactivity (positive 
symptom) [11], 20 mg/kg, i.p. for cognitive deficit 
(cognitive symptom) [5], and 30 mg/kg, i.p. for 
enhanced-immobility (negative symptom) [30]; as 
ketamine have been found to induced different 
schizophrenia-like behavioral phenotypes. 
 

2.5 Acute Toxicity Study  
 
The method described by Lorke [28] was used to 
determine the LD50, which is the index of acute 



 
 
 
 

Ben-Azu et al.; BJPR, 12(6): 1-14, 2016; Article no.BJPR.28629 
 
 

 
4 
 

toxicity. Albino mice (20–25 g) of either sex were 
used. This method involved an initial dose finding 
procedure, in which the animals were divided into 
three groups of three animals. Doses of 10, 100 
and 1000 mg/kg were administered p.o.), one 
dose for each group. The treated animals were 
monitored for 24 h mortality and general 
behavior. From the results of the above step, four 
different doses of the extract (2000, 3000, 4000 
and 5000 mg/kg) were chosen and administered 
per oral (p.o), respectively to four groups of one 
mouse per group. The treated animals were 
monitored for 24 h. The LD50 was calculated as 
the geometric mean of the lowest dose showing 
death and the highest dose showing no death. 
 

2.6 Experimental Paradigms 
     
2.6.1 Apomorphine-induced stereotypy 
 
The anti-psychotic effect of EETI was assessed 
using the Apomorphine-induced stereotyped 
behavioral paradigm in mice predictive of human 
psychosis as previously described by Bourin et. 
al. [29]. The mice were randomly divided into six 
treatment groups (n = 5/group). Group 1 received 
vehicle (10 mL/kg, p.o.), group 2-5 were 
pretreated with EETI (125, 250, 500 and 1000 
mg/kg, p.o), while group 6 was pretreated with 
haloperidol (HLP) (1 mg/kg, p.o.) as positive 
control. Sixty minutes thereafter, each animal in 
group 1-6 received i.p. injection of apomorphine 
(APO) (1 mg/kg) and mouse were placed 
immediately in a transparent observation 
chamber (20 cm × 20 cm × 23 cm). Thereafter, 
stereotype behaviors were observed for 2 
minutes at 10, 15, 30, 45 and 60 minutes after 
APO injection. Stereotype behaviors were scored 
as: 0 = absence of stereotype behavior; 1 = 
presence of stereotype movements of the head; 
2 = intermittent sniffing; 3 = chewing; 4 = intense 
licking. After each mice session, the observation 
chamber was cleaned with 70% ethanol to 
remove residual odour. 
 
2.6.2 Ketamine-induced stereotypy 
 
Ketamine-induced stereotypy was also employed 
to screen for the antipsychotic effect of EETI 
according to the method described by Yamamoto 
et. al.[11].  The mice were randomly divided into 
six treatment groups (n = 5/group). Group 1 
received vehicle [10 mL/kg, (p.o.), while group 2-
5 were pretreated with EETI (125, 250, 500 and 
1000 mg/kg, p.o), while group 6 was pretreated 
with risperidone (RIS) (0.5 mg/kg, p.o.) as 
positive control. Sixty minutes thereafter, each 

animal in group 1-6 received i.p. injection of sub-
anaesthetic dose of ketamine (KET) (10 mg/kg), 
and mouse was placed immediately in a 
transparent observation chamber (20 cm × 20 
cm × 23 cm) and stereotypy was observed for 2 
minutes at 10, 15, 20, 30 and 45 minutes 
respectively. Stereotyped behaviors were scored 
as described above. 
 
2.6.3 Ketamine-induced hyperlocomotion 

(Open field test) 
 
Ketamine-induced hyperlocomotion was also 
used to screen for the antipsychotic effect of 
extract as previous described by Yamamoto et. 
al.[11] with brief modification, the open field 
apparatus consisted of a wooden box measuring 
35 x 30 x 23 cm with visible lines drawn to divide 
the floor into 36 (20 cm × 20 cm) squares with a 
frontal glass wall and placed in a sound free 
room. The mice were randomly divided into six 
treatment groups (n = 5/group) and treated as 
described in the above ketamine model of 
stereotypy.  Thereafter, the animals were placed 
in the rear left square and left to explore it. The 
duration of immobility(s) and number of line 
crossed were recorded for 5 minutes using a 
stopwatch. After each mice session, the 
observation chamber was cleaned with 70% 
ethanol to remove residual odor. 
 
2.6.4 Ketamine-enhanced immobility in 

forced swim test 
 
The antipsychotic effect of EETI was also 
screened using ketamine-enhanced immobility in 
forced swim test paradigm, that is predictive of 
the negative symptoms of schizophrenia, which 
is reflected as a state of despair in mice as 
described by Chindo et. al.[30]. The reduction in 
the immobility time serves as a specific and 
selective index of antidepressant activity that can 
be used to alleviate the negative symptoms of 
schizophrenia. The mice were randomly divided 
into seven (7) treatment groups (n = 5/group). 
Group 1 was pretreated with vehicle (10 mL/kg, 
p.o.) once daily for 5 days while group 2-6 were 
pretreated with a sub-anaesthetic dose of KET 
(30 mg/kg, i.p.) once daily for 5 days. After 
which, each mice were placed in a standardized 
transparent glass cylinder (height 46 cm, 
diameter 20 cm) containing water at 25 °C to a 
depth of 30 cm and was forced to swim for 5 min 
(pretest session) 1 h after the last treatment (5

th
 

day) with ketamine for habituation. Twenty four 
hours (24 h) after the last treatment (6

th
 day) with 

vehicle and KET respectively, group 2 received 
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vehicle (10 mL/kg, p.o.) as a negative control, 
group 3-6 were treated with EETI (125, 250, 500 
and 1000 mg/kg, p.o), while group 7 was treated 
with RIS (0.5 mg/kg, p.o.) as positive control. 
Sixty minutes later, each animal was placed in 
the same transparent glass cylinder containing 
water at 25 °C to a depth of 30 cm and forced to 
for 6 minutes and the immobility time was 
recorded for a period of 5 minutes with a 
stopwatch (test session) after discarding activity 
in the first 1 minute, during which the animal tries 
to escape [31]. After each session, the mice was 
removed immediately from the cylinder, dried 
with a towel and kept in an open space until 
completely dried before returning the mice to 
their home cages.  
 
2.6.5 Ketamine-induced cognitive dysfunction 
 
The effect of the extract on spontaneous 
alternation performance was assessed using a 
Y-maze test (YMT), which allows the evaluation 
of cognitive searching behavior, as an index for 
the cognitive dysfunction of schizophrenia as 
described by Monte et. al.[5]. In this protocol, 
mice was divided into 6 groups (n=5/group). 
Group 1 was treated with vehicle (10 mL/kg, p.o.) 
once daily, while group 2-6 were treated with 
sub-anaesthetic dose of ketamine (20 mg/kg) 
once daily i.p. for 14 days.  From the 8

th
 to 14

th
 

day of treatment onwards, group 2 was 
additionally treated with vehicle (10 mL/kg, p.o.) 
once daily as negative control, while group 3-5 
was treated additionally with extract (125, 250, 
500 and 1000 mg/kg, p.o.) once daily, and group 
6 also received in addition RIS (0.5 mg/kg, p.o.) 
once daily as a positive control, with a 30 min 
interval between treatments. Twenty four hours 
(24 h) after the last treatment (15

th
 day), each 

mouse was gently placed individually in the Y-
maze apparatus, which consisted of three 
identical arms (33 × 11 × 12 cm each) in which 
the arms are symmetrically separated at 120° 
[32]. Specifically, each mouse was placed at the 
end of arm A, and allowed to explore all the three 
arms (labeled A, B, C) freely for 5 minutes, taking 
the following parameters: the number of arm 
visits and sequence (alternation) of arm visits 
visually. After each mice session, the observation 
chamber was cleaned with 70% ethanol to 
remove residual odor. 
 
2.6.6 Ptosis induction 
 
Drug-induced ptosis in psychotic paradigm is 
used as a specific index to show the level of 
monoamine depletion or hypofunction as 

described by Bourin et. al. [33]. Mice were 
divided into six groups (n=5/group). The group 1 
was treated with vehicle (10 mL/kg, p.o.) while 
group 2-5 were treated with EETI (125, 250, 500 
and 1000 mg/kg, p.o.), and the sixth group was 
treated with HLP (1 mg/kg, p.o.). All animals 
were kept in individual transparent glass ptosis 
observation chambers (20 cm above the bench 
top) immediately after treatment to allow for 
stable assessment of ptosis. The degree of 
ptosis of each animal was evaluated and 
recorded at 60, 90 and 120 minutes 60 minutes 
after treatment. The degree of ptosis was rated 
according to the following rating scale: 0, eyes 
open; 1, eyes one-quarter closed; 2, eyes half 
closed; 3, eyes three-quarter closed; and 4, 
completely closed. The results obtained were 
compared with control groups treated with 
vehicle. 
 

2.6.7 Catalepsy test 
 
In animals, a state of rigidity and immobility also 
known as catalepsy is a state in which the 
subject/experimental animal remain immobile    
in an unusual position. It is used as an index      
of extrapyramidal symptoms seen clinically from 
antipsychotic drugs [34]. The cataleptic effect    
of the EETI was investigated according to the 
modified version previously described by Costall 
and Naylor [35]. The animals was divided into  
six treatment groups (n = 5/group). The group 1 
was treated with vehicle (10 mL/kg, p.o.) while 
group 2-5 were treated with EETI (125, 250,   
500 and 1000 mg/kg, p.o.), and the sixth group 
was treated with HLP (1 mg/kg, p.o.) 60 minutes 
before testing for catalepsy. The test was done 
by gently placing the fore limbs of each animal 

on a horizontal plane wood surface (H = 6 cm; W 

= 4 cm; L = 16 cm) and the duration of akinesia 

(period of time the animal remained in one 
position, before initiating any active movement) 
in seconds was  recorded. An animal is 
considered cataleptic if it remains on the block 
for 60 sec [13]. 
 

2.3 Statistical Analysis 
 

The Data were expressed as Mean ± standard 
error of mean (S.E.M).  The data were analyzed 
using one-way analysis of variance (ANOVA) 
followed by post hoc test (Newman-Keul) for 
multiple comparisons where appropriate        
using GraphPad InStat® Biostatistics software 
(GraphPad Software, version 4.0). A level of P < 
0.05 was considered as statistically significant for 
all tests. 
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3. RESULTS 

 
3.1 Acute Toxicity Test 
 
The LD50 of the ethanol extract of Terminalia 
ivorensis stem bark was found to be 2236.06 
mg/kg, p.o. body weight. 
 

3.2 Effect of EETI on Apomorphine- and 
Ketamine-induced Stereotypy, and 
Ketamine-Induced Hyperlocomotion 

 
Apomorphine (1 mg/kg, i.p.) and ketamine (10 
mg/kg, i.p.) significantly (P < 0.05) induced 
marked stereotyped behaviors characterized by 
head movements, intermittent sniffing, chewing 
and intense licking in mice. In the same contest, 
ketamine (10 mg/kg, i.p.) also significantly (P < 
0.05) induced-hyperlocomotion as indexed by an 
increase in the number of line crossings and 
decrease in duration of immobility(s) compared 
to the vehicle (10 mL/kg, p.o.) treated group, 
which are reflected in schizophrenic patient as a 
form of positive symptoms. Pretreatment with 
EETI (125, 250, 500 and 1000 mg/kg, p.o.) 
significantly (P < 0.05) prevented apomorphine-
induced stereotyped (Fig. 1) or ketamine-induced 
stereotyped behaviors (Fig. 2), and ketamine-
induced hyperlocomotion as indexed by a 
decrease in number of line crossings and 
duration of immobility(s) (Table 1) in a dose 
dependent manner compared to control. 
Similarly, effects were observed in animals 
treated with HLP (1 mg/kg, p.o.) or risperidone 
(0.5 mk/kg, p.o.), as they significantly (P < 0.05) 
prevented the manifestations of stereotyped 
behaviors induced by APO (1 mg/kg, i.p.) or 
ketamine (10 mg/kg, i.p.), and hyperlocomotion 
induced by ketamine (10 mg/kg, i.p.) in all 
paradigms, respectively. 

 

3.3 Effect of EETI on Ketamine-enhanced 
Immobility in Forced Swim Test in 
Mice 

 
Effect of EETI on ketamine-enhanced immobility 
in forced swim test, as measured by the duration 
of immobility time in forced swim test in mice is 
shown in Fig. 3. Ketamine (30 mg/kg, i.p.) 
significantly enhanced the immobility (P < 0.05) 
compared to the group treated with vehicle (10 
mL/kg, p.o.) in the forced swim test in mice. EETI 
(125, 250, 500 and 1000 mg/kg, p.o.) 
significantly (P < 0.05) decreased immobility time 
in a dose-dependent manner compared to the 
group treated with ketamine (30 mg/kg, i.p.) 

alone (negative control). Similar effect was also 
observed in the group treated with RIS (0.5 
mg/kg, p.o.), as it significantly (P < 0.05) 
decreased immobility time compared to the 
ketamine treated group (Fig. 3). 
 

 
Fig. 1. Effects of EETI on apomorphine-

induced stereotyped behavior 
Value represents the mean±S.E.M of 5 animals / 
group. One way ANOVA revealed that there is 

significant [F (5, 24) = 92.23, P < 0.0001] differences 
between various treatment groups. 

* 
Denotes P < 0.05 

as compared with APO group, APO = Apomorphine, 
HLP = Haloperidol, EETI = Ethanol extract of T. 

ivorensis stem bark 
 

 
Fig. 2. Effects EETI on ketamine-induced 

stereotyped behavior 
Value represents the mean±S.E.M of 5 animals / 
group. One way ANOVA revealed that there is 

significant [F (5, 24) = 391.0, P < 0.0001] differences 
between various treatment groups. 

* 
Denotes P < 0.05 

as compared with KET-treated group, KET = 
Ketamine, RIS = Risperidone, EETI = Ethanol extract 

of T. ivorensis stem bark 
 

3.4 Effect of EETI on Ketamine-induced 
Cognitive Dysfunction 

 

The effect of ethanol extract on reversal 
treatment of ketamine-induced cognitive 
dysfunction was assessed by sequence of arm 
entry and number of arm entries in the Y-maze  
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Table 1. Effects of EETI on ketamine-induced hyperlocomotion 
 

Treatments Dose (mg/kg)  Number of line crossings Duration of immobility 

VEH  10 mL/kg 71.80±4.283 163.8±7.385 

KET 10  232.8±8.628
** 

60.80±4.017
** 

EETI  125  70.80±7.664
* 

198.4 ±4.966
* 

EETI 250  59.00±7.635
* 

252.4±14.13
* 

EETI 500  32.00±2.720
* 

269.2±7.130
* 

EETI 1000  22.80±4.620
* 

283.6±4.622
* 

RIS 0.5  17.60±4.707
* 

289.0±7.906
* 

Value represents the mean±S.E.M of 5 animals / group. One way ANOVA revealed that there is significant  
[F (6, 28) = 147.7, P < 0.0001] and [F (6, 28) = 111.8, P < 0.0001] differences between various treatment groups 

for number of line crossing(s) and immobility time, respectively.  
* 
Denotes P < 0.05 as compared with  

ketamine group, KET = Ketamine, RIS = Risperidone, EETI = Ethanol extract of T. ivorensis stem bark,  
VEH = Vehicle 

 
apparatus. Chronic ketamine (20 mg/kg, i.p.) 
treatment significantly (P < 0.05) induced 
cognitive dysfunction (memory impairment) 
compared to the group that received vehicle (10 
mL/kg, p.o.) only following 14 days treatment. 
EETI (125, 250, 500 and 1000 mg/kg, p.o.) 
significantly reversed in a dose-dependent 
manner the cognitive dysfunction following 
treatment from the 8

th
 to 14

th
 day of treatment 

compared to the ketamine treated group. RIS 
(0.5 mg/kg, p.o.) compared to the ketamine 
treated group, significantly (P < 0.05) reversed 
the cognitive dsyfunction following treatment 
from the 8

th
 to 14

th
 day of treatment (Fig. 4). 

 

 
 

Fig. 3. Effect of EETI on ketamine-enhanced 
immobility in forced swim test in mice 

Value represents the mean±S.E.M of 5 animals / 
group. One way ANOVA revealed that there is 

significant [F (6, 26) = 72.64, P < 0.0001] difference 
between various treatment groups. 

** 
Denotes P < 0.05 

as compared to vehicle group. 
* 
Denotes P < 0.05 as 

compared with ketamine group. KET = Ketamine, RIS 
= Risperidone, EETI = Ethanol extract of T. ivorensis 

stem bark 
 

 
 

Fig. 4. Effect of EETI on reversal treatment of 
ketamine-induced cognitive dysfunction 
Value represents the mean±S.E.M of 5 animals / 
group. One way ANOVA revealed that there is 

significant [F (6, 28) = 77.33, P < 0.0001] difference 
between various treatment groups.  

** 
Denotes P < 

0.05 as compared to vehicle group. 
* 
Denotes P < 0.05 

as compared with ketamine group. KET = Ketamine, 
RIS = Risperidone, EETI = Ethanol extract of T. 

ivorensis stem bark 
 

3.5 Effect of EETI on Ptosis Induction 
 
Evaluation of EETI-induced ptosis at 60th, 90th, 
and 120

th
 minutes post treatment, as evaluated 

on the ptosis scale is shown in Table 2. EETI 
(125, 250 mg/kg, p.o.) showed no significant (P > 
0.05) induction of ptosis compared to the vehicle 
(10 mL/kg, p.o.). However, EETI (500 and 1000 
mg/kg, p.o.), significantly (P < 0.05) induced 
ptosis when compared to the control (vehicle, 10 
ml/kg, p.o.). HLP (1 mg/kg, p.o.) was shown to 
significantly (P < 0.05) induce ptosis compared to 
control (vehicle, 10 ml/kg, p.o.). However, there 
was a dose-dependent induction of ptosis with 
EETI (125, 250, 500 and 1000 mg/kg, p.o.), but 
significant (P < 0.05) induction of ptosis was only 
observed with doses of EETI (500, 1000 mg/kg,
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Table 2. Effect of EETI on ptosis induction 
 

Treatments Dose (mg/kg) 60 min 90 min 120 min 

VEH 10 mL/kg 0.00±0.00 0.00±0.00 0.20±0.20 

EETI 125  0.60±0.24 0.40±0.24 0.60±0.24 

EETI 250 0.20±0.20 0.40±0.24 0.80±0.20 

EETI 500 1.60±0.40
* 

2.00±0.00
*
 2.00±0.00

*
 

EETI 1000 2.80±0.20
*
 3.00±0.00

*
 3.00±0.00

*
 

HLP 1 2.20±0.20
*
 2.40±0.24

*
 3.00±0.00

*
 

The results are expressed as mean±SEM (n= 5). One way ANOVA revealed that there is significant [F (5, 24) = 
22.99 P<0.0001 at 60 min; F (5, 24) = 52.49 P < 0.0001; F (5, 24) = 65.83 P<0.0001] at 60, 90 and 120 min 

respectively difference between various treatment groups. 
HLP = Haloperidol, EETI = Ethanol extract of T. ivorensis stem bark, VEH = Vehicle 

 
p.o.), when compared the control (vehicle 10 
mL/kg, p.o.) (Table 2). 

 

3.6 Effect of EETI on Cataleptic Behavior 
 
The EETI (125, 250, 500 and 1000 mg/kg, p.o.) 
showed no significant (P > 0.05) prolongation in 
the duration of akinesia (cataleptic effect, an 
index of impaired extrapyramidal system), 
compared with the vehicle treated group (10 
mL/kg, p.o.).  However, HLP (1 mg/kg, p.o.) 
significantly (P < 0.05) prolonged the duration of 
akinesia above 60 seconds in comparison with 
the group treated with vehicle (Table 3). 
 
Table 3. Effect of EETI on cataleptic behavior 

 

Value represents the mean±S.E.M of 5 animals / 
group. 

* 
Denotes P < 0.05 compared to vehicle group 

(ANOVA followed by Newman Keuls post hoc test). 
HLP = Haloperidol, EETI = Ethanol extract of T. 

ivorensis stem bark, VEH = Vehicle 
 

4. DISCUSSION 
 
Herein we demonstrated that the acute toxicity 
test conducted in the study revealed that ethanol 
extract of T. ivorensis stem bark (EETI) was 
relatively safe for the animals, with an LD50 of 
2236.06 mg/kg, p.o. body weight, as no sign of 
toxicity and death was observed at the chosen 
doses of 125-1000 mg/kg, p.o. for this 
experiment in mice. In this study, T.ivorensis was 

found to attenuate psychotic manifestations 
(positive, negative and cognitive symptoms) in 
mice. 
 
Animal models used to study schizophrenia 
include both models of the full syndrome and 
models of specific signs of symptoms [36]. The 
behavioral studies using antagonism of 
stereotypy and hyperlocomotion induced by 
dopaminergic agonists (apomorphine) [37] and 
NMDA receptor antagonists (ketamine) [11] have 
traditionally been used to screen antipsychotic 
activity of novel antipsychotic agents. 
Stereotyped behaviors, which present itself as 
repetitive, ritualistic and functionless motor 
behavior [38], are one of the most prominent 
positive symptoms of psychosis [39]. 
Apomorphine activates post-synaptic dopamine 
D-2 receptors in the brain directly, and through 
this mechanism apomorphine accentuates 
locomotor activity leading to stereotypic behavior, 
resulting to repetitive and ritualistic functionless 
behavioral pattern [40,41]. Blockade of 
apomorphine-induced stereotyped behavior 
suggests neuroleptic activity [42,43]. The effect 
of the ethanol extract prepared from the stem 
bark of T. ivorensis (EETI) against apomorphine 
is therefore suggestive of possible interference 
with central dopaminergic neurotransmission and 
neuroleptic effect. This observation is consistent 
with earlier findings on the inhibition of 
apomorphine-induced stereotypy by the leaf 
extract of Crassocephalum bauchiense [41] and 
Viscum album [44]. In the same contest, 
Sonibare et al. [45] reported the inhibition of 
amphetamine-induced stereotypy by ethanol 
extract of Lonchocarpus cyanescens. 
 
The finding that EETI significantly antagonized 
the stereotypy and hyperactivity 
(hyperlocomotion) induced by ketamine in a 
dose-dependent manner, also suggest that the 

Treatments Dose  

(mg/kg) 

Duration of 
akinesia / 60 secs 

VEH 10 mL/kg 6.40±0.927 

EETI 125 7.80±1.393
 

EETI  250 10.60±0.678
 

EETI  500 12.00±1.140
 

EETI  1000 23.80±1.497
 

HLP  1 62.00±2.915
* 
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plant possess antipsychotic property. Increased 
motor activity is a validated animal paradigm 
employed in the evaluation of compounds 
suspected to have antipsychotic property [46]. 
Hyperactivity produced by ketamine at sub-
anaesthetic doses is closely related to the 
psychotic agitation seen in patients with pychosis 
[47]. It is well known that dopaminergic 
mechanism play a central role in the mediation of 
stereotypic and locomotion activity, and ketamine 
may influence dopamine transmission and 
receptor activation via multiple mechanisms [48]. 
It is important to stress that biochemical data 
have shown that ketamine enhance dopamine 
release [49] and inhibit dopamine uptake [13] in 
the straitum and cortex respectively. Also, a 
possible mechanism by which ketamine might 
produce this adverse behavioral effects, at least 
partially, have been related to the blockade of 
NMDA receptors located on inhibitory GABAergic 
neurons in the limbic and subcortical brain 
regions [50]. This disinhibitory action has been 
reported to increase the neuronal activity and 
excessive dopamine release in the limbic striatal 
regions [51]. This hypothesis can explain some 
studies which have revealed a lower density of 
glutamatergic receptors in brain of schizophrenic 
patients [52]. The finding that the EETI 
significantly antagonized in a dose-dependent 
manner the hyperactivity (hyperlocomotion) and 
stereotypy-induced by ketamine, further suggest 
that the antipsychotic property of EETI might be 
due to its atypical mechanism of action via 
NMDA receptor thus, leading to the modulation 
of dopamine activity and hence the ability to 
show efficacy against positive symptoms. This 
observation is also consistent with earlier 
findings on the effect of ketamine on locomotion 
and stereotyped behavior, and inhibition of 
ketamine-induced stereotypy and 
hyperlocomotion by the root extract of Panax 
quinquefolium [13].  
 

Behavioral despair including flattening of affect 
and avolition are some of the major negative 
symptoms of schizophrenia, and forced swim 
test-induced immobility in rodent is an acceptable 
animal model of depression [53] that reflects a 
state of ‘despair’ in mice, and reduction in 
immobility time serves as a specific and selective 
index of antidepressant activity [30]. Therefore, 
the increase in immobility time in FST following 
repeated administration of a sub-anaesthetic 
dose of ketamine in the negative control group 
treated with ketamine alone in this study 
corroborates with previous studies [13,30]. In this 
contest, the antipsychotic property of the extract 

was further demonstrated by the reduction of 
ketamine-enhanced immobility in forced swim 
test. Although, the mechanisms by which 
negative symptoms are induced in ketamine 
psychosis are not fully understood, previous 
studies have reported the involvement of 5-
hydroxytryptaminergic (5-TH) system in the 
negative symptoms of schizophrenia [13,54]. The 
findings by Chindo et. al. [30] suggests that 
ketamine-enhanced immobility in the FST might 
be mediated, at least in part, via 5-HT2A 
receptors blockade, since 5-HT2A receptor 
blockers such as clozapine, risperidone and 
paroxetine attenuated the ketamine-enhanced 
immobility time. Therefore, our finding that EETI 
demonstrated significant reduction of ketamine-
enhanced immobility in FST in a dose-dependent 
manner with a comparable result to that of 
risperidone, further suggest that the extract may 
possess antipsychotic capability that may 
attenuate the negative symptoms of 
schizophrenia. 

 
Cognitive impairments such as deficits in 
attention, executive function, working (short-
term) memory, and long-term memory, are core 
symptoms in patients with schizophrenia [55]. 
Among these, learning and memory impairments 
are known to be particularly severe, and they are 
suggested to be major determinants of the 
amount of disability patients with schizophrenia 
experience in social and occupational functioning 
and in independent living [56]. The Y-maze test 
(YMT) paradigm has been used previously to 
evaluate the effects of antipsychotic drugs (e.g., 
risperidone) on learning and memory function in 
rodents [5]. Our findings also depict the memory 
impairing properties of ketamine as indexed by 
decreased percentage correct alternations on the 
YMT, which was reverted by EETI treatment and 
also by standard atypical drug, risperidone. 
Mechanistically, learning is associated with 
phosphorylation by calcium/calmodulin-
dependent protein Kinase II (Ca

2+
/CaMKII). 

Inhibition of NMDA receptor as a ligand-gated 
Ca

2+
 channel decreases this phosphorylation, 

which may explain the deficits in cognitive 
function induced by ketamine due to disruption of 
long-term potentiation (LTP) [57]. Moreover, 
ketamine also inhibits acetylcholine; a key player 
in the initial stages of memory formation [58] by 
antagonizing nicotinic acetylcholine receptor α-
7nAchR [59]. Therefore, the learning and 
memory impairment by ketamine via NMDA 
receptor and reversal by EETI can also correlate 
its memory improving capability in this disorder.  
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Adversely, extrapyramidal symptoms (EPSs) are 
thought to result from decreased dopamine 
activity in the striatum, a preferential action of a 
novel agent against dopamine agonist-induced 
hyperactivity or stereotypy might serve as an 
indicator of a lower propensity to induced EPSs 
in patients [60]. This is because preferential 
blockade of D2 receptors in the limbic system 
confers antipsychotic effects with little or no 
tendency to cause EPSs [43,60]. The EPSs or 
catalepsy test is a paradigm established in 
rodents to test the tendency of antipsychotics 
(e.g., haloperidol) to induce EPSs based on the 
prolongation of the duration of akinesia or 
immobility time upon an imposed posture [61]. 
However, the test for catalepsy demonstrated 
that the extract is devoid of catalepsy on the 
animals, as indexed by the duration of akinesia 
below 60 seconds compared to the vehicle-
treated group. Also, the test for drug-induced 
ptosis, demonstrated that the extract elicited 
dose-dependent ptosis induction, as indexed by 
the dropping of the eye-lid of the animals, which 
is further suggestive of the suppression of the 
monoaminergic system [62] by EETI. 
 
Taken together, these findings reveals that the 
ethanol extract of T. ivorensis stem bark contains 
biologically active substance(s) that might be 
acting centrally through the inhibition of 
dopaminergic pathway or the modulation of other 
pathway(s) including NMDA receptor of 
glutamatergic system linked to this dopaminergic 
transmission. The anti-psychotic potential of this 
extract need further investigation since drug used 
in the treatment of various psychosis abolished 
apomorphine- and ketamine-induced stereotyped 
behavior, ketamine-induced hyperactivity, 
ketamine-enhanced-immobility, and ketamine-
induced cognitive deficit. It is known that this 
plant contains various phytochemical antioxidant 
constituents, many of which are flavonoid-based 
and have been shown to be ligands for the type 
A GABA (GABAA) receptors where they exert 
their sedative and tranquilizing activities [63]. 
Other possible effects of these phytochemicals 
may include anti-neuroinflammatory, 
neuroprotective, chemoprevention, anti-oxidation 
actions [64,65]. Of note, a recent study 
demonstrated that ethanol extract of T. ivorensis 
treatment restores GSH levels and to a great 
extent reverses antioxidant defense alterations in 
the brain of mice treated with ketamine [27], 
hence may explain some of the beneficial 
behavioral effect (against the positive, negative 
and cognitive symptoms) demonstrated herein. 
Moreover, it is known that most psychotic 

patients are in a dangerous state of psychomotor 
excitement thus, requiring the use of drugs with 
tranquilizing or sedative properties [42,66]. 
 

5. CONCLUSION 
 
This study provides valuable evidence that 
suggests that T. ivorensis contain biologically 
active constituents that possess antipsychotic 
activity. Thus, justifying its ethnomedicinal claims 
in the management of psychotic disorders. 
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